## Principal component analysis

# Hypothesis: Hebbian synaptic 

 plasticity enables perceptrons to perform principal component analysis
## Outline

- Variance and covariance
- Principal components
- Maximizing parallel variance
- Minimizing perpendicular variance
- Neural implementation
- covariance rule


## Principal component

- direction of maximum variance in the input space
- principal eigenvector of the covariance matrix
- goal: relate these two definitions


## Variance

- A random variable fluctuating about $\quad \delta x=x-\langle x\rangle$ its mean value.

$$
\left\langle(\delta x)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}
$$

- Average of the square of the fluctuations.


## Covariance

- Pair of random variables, each

$$
\delta x_{1}=x_{1}-\left\langle x_{1}\right\rangle
$$ fluctuating about its mean value.

$$
\delta x_{2}=x_{2}-\left\langle x_{2}\right\rangle
$$

$$
\left\langle\delta x_{1} \delta x_{2}\right\rangle=\left\langle x_{1} x_{2}\right\rangle-\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle
$$

- Average of product of fluctuations.


## Covariance examples

positive covariance

negative covariance


## Covariance matrix

- $N$ random variables
- $N x N$ symmetric matrix

$$
C_{i j}=\left\langle x_{i} x_{j}\right\rangle-\left\langle x_{i}\right\rangle\left\langle x_{j}\right\rangle
$$

- Diagonal elements are variances


## Principal components

$$
\begin{gathered}
C v_{1}=\lambda_{1} v_{1} \\
C v_{2}=\lambda_{2} v_{2} \\
\vdots \\
C v_{k}=\lambda_{k} v_{k}
\end{gathered}
$$

- eigenvectors with $k$ largest eigenvalues
- Now you can calculate them, but what do they mean?
$C v_{N}=\lambda_{N} v_{N}$


## Handwritten digits

## Principal component in 2d



## One-dimensional projection



## Covariance to variance

- From the covariance, the variance of any projection can be calculated.
- Let $w$ be a unit vector

$$
\begin{aligned}
\left\langle\left(w^{T} x\right)^{2}\right\rangle-\left\langle w^{T} x\right\rangle^{2} & =w^{T} C w \\
& =\sum_{i j} w_{i} C_{i j} w_{j}
\end{aligned}
$$

## Maximizing parallel variance

- Principal eigenvector of $C$
- the one with the largest eigenvalue.

$$
\begin{aligned}
& w^{*}=\underset{w: w=1}{\arg \max } w^{T} C w \\
& \begin{aligned}
\lambda_{\max }(C) & =\max _{w: w=1} w^{T} C w \\
& =w^{* T} C w^{*}
\end{aligned}
\end{aligned}
$$

## Orthogonal decomposition



## Total variance is conserved

$$
\left.\left.\left.\left.\langle | x\right|^{2}\right\rangle=\left.\langle | x_{\|}\right|^{2}\right\rangle+\left.\langle | x_{\perp}\right|^{2}\right\rangle
$$

- Maximizing parallel variance = Minimizing perpendicular variance

$$
\left.\left.\left.\underset{w:|w|=1}{\operatorname{argmax}}\langle | x_{\|}\right|^{2}\right\rangle=\left.\underset{w:|w|=1}{\operatorname{argmin}}\langle | x_{\perp}\right|^{2}\right\rangle
$$

## Rubber band computer



## Correlation/covariance rule

- presynaptic activity x
- postsynaptic activity y
- Hebbian

$$
\begin{aligned}
& \Delta w=\eta y x \\
& \Delta w=\eta(y-\langle y\rangle)(x-\langle x\rangle)
\end{aligned}
$$

## Stochastic gradient ascent

- Assume data has zero mean
- Linear perceptron

$$
\begin{array}{cl}
y=w^{T} x & \Delta w=\eta x x^{T} w \\
\langle\Delta w\rangle=\eta \frac{\partial E}{\partial w} & E=\frac{1}{2} w^{T} C w \\
C=\left\langle x x^{T}\right\rangle
\end{array}
$$

## Preventing divergence

- Bound constraints


## Oja's rule

- Converges to principal component - Normalized to unit vector

$$
\Delta w=\eta\left(y x-y^{2} w\right)
$$

## Multiple principal components

- Project out principal component
- Find principal component of remaining variance


## clustering vs. PCA

- Hebb: output x input
- binary output
- first-order statistics
- linear output
- second-order statistics


## Data vectors

- $x_{a}$ means ath data vector
- ath column of the matrix $X$.
- $X_{i a}$ means matrix element $X_{i a}$
- ith component of $x_{a}$
- $x$ is a generic data vector
- $x_{i}$ means ith component of $x$


## Correlation matrix

- Generalization of second moment

$$
\begin{aligned}
\left\langle x_{i} X_{j}\right\rangle & =\frac{1}{m} \sum_{a=1}^{m} X_{i a} X_{j a} \\
\left\langle x X^{T}\right\rangle & =\frac{1}{m} X X^{T}
\end{aligned}
$$

