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Hypothesis: Hebbian synaptic 
plasticity enables a perceptron

to compute the mean of its 
preferred stimuli.



Unsupervised learning

• Sequence of data vectors
• Learn something about their structure
• Multivariate statistics
• Neural network algorithms
• Brain models



Data can be summarized by a 
few prototypes.



Vector quantization

• Many telecom applications
• Codebook of prototypes
• Send index of prototype rather than 

whole vector
• Lossy encoding



A single prototype

• Summarize all data with the sample 
mean.
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Multiple prototypes

• Each prototype is the mean of a subset 
of the data.

• Divide data into k clusters.
– One prototype for each cluster.



Assignment matrix
cluster α

Aaα =
1, xa ∈ cluster α
0, otherwise

⎧ 
⎨ 
⎩ 

data 
vector 

a

• Data structure for cluster memberships.



k-means algorithm

• Alternate between computing means 
and computing assignments.
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Objective function

• Why does it work?
• Method of minimizing an objective 

function.



Rubber band computer
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• Attach rubber band from each data 
vector to the prototype vector.

• The prototype will converge to the 
sample mean.



The sample mean maximizes 
likelihood

• Gaussian distribution

• Maximize
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Objective function for k-means
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Local minima can exist



Model selection

• How to choose the number of clusters?
• Tradeoff between model complexity and 

objective function.



Neural implementation

• A single perceptron can learn the mean 
in its weight vector.

• Many competing perceptrons can learn 
prototypes for clustering data.



Batch vs. online learning

• Batch
– Store all data vectors in memory explicitly.

• Online
– Data vectors appear sequentially.
– Use one, then discard it.
– Only memory is in learned parameters.



Learning rule 1

wt = wt−1 + ηxt



Learning rule 2
wt = wt−1 +ηt xt − wt−1( )

= 1− ηt( )wt−1 +ηt xt

• “weight decay”



Learning rule 2 again

∆w = −η ∂
∂w

1
2

x − w 2

• Is there an objective function?



Stochastic gradient following

The average of the update is in 
the direction of the gradient.



Stochastic gradient descent

∆w = −η ∂
∂w

e w,x( )

∆w = −η∂E
∂w E w( )= e w,x( )



Convergence conditions

• Learning rate vanishes
– slowly

– but not too slowly

• Every limit point of the sequence wt is a 
stationary point of E(w)

ηt
2 < ∞

t
∑
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∑



Competitive learning

• Online version of k-means

ya =
1, minimal x − wa

0, other clusters

⎧ 
⎨ 
⎩ 

∆wa = ηya x − wa( )



Competition with WTA

• If the wa are normalized

argmin
a

x − wa = max
a

wa ⋅ x



Objective function

min
a

1
2

x − wa
2



Cortical maps

Images removed due to copyright reasons.



Ocular dominance columns

Images removed due to copyright reasons.



Orientation map

Images removed due to copyright reasons.



Kohonen feature map

ya =
1, neighborhood of closest cluster
0, elsewhere

⎧ 
⎨ 
⎩ 

∆wa = ηya x − wa( )



Hypothesis: Receptive fields 
are learned by computing the 
mean of a subset of images



Nature vs. nurture

• Cortical maps
– dependent on visual experience?
– preprogrammed?
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