MIT Department of Brain and Cognitive Sciences 9.641J, Spring 2005 - Introduction to Neural Networks Instructor: Professor Sebastian Seung

Clustering

Hypothesis: Hebbian synaptic plasticity enables a perceptron to compute the mean of its preferred stimuli.

Unsupervised learning

- Sequence of data vectors
- Learn something about their structure
- Multivariate statistics
- Neural network algorithms
- Brain models

Data can be summarized by a few prototypes.

Vector quantization

- Many telecom applications
- Codebook of prototypes
- Send index of prototype rather than whole vector
- Lossy encoding

A single prototype

• Summarize all data with the sample mean.

$$\mu = \frac{1}{m} \sum_{a=1}^{m} x_a$$

Multiple prototypes

- Each prototype is the mean of a subset of the data.
- Divide data into k clusters.
 - One prototype for each cluster.

• Data structure for cluster memberships.

k-means algorithm

• Alternate between computing means and computing assignments.

Objective function

- Why does it work?
- Method of minimizing an objective function.

Rubber band computer

$$\frac{1}{2} \sum_{a=1}^{m} |x_a - \mu|^2$$

- Attach rubber band from each data vector to the prototype vector.
- The prototype will converge to the sample mean.

The sample mean maximizes likelihood

Gaussian distribution

$$P_{\mu}(x) \propto \exp\left(-\frac{1}{2}|x-\mu|^2\right)$$

• Maximize

$$P_{\mu}(x_1)P_{\mu}(x_2)\cdots P_{\mu}(x_m)$$

Objective function for k-means

$$E(A,\mu) = \frac{1}{2} \sum_{a=1}^{m} \sum_{\alpha=1}^{k} A_{a\alpha} |x_{a} - \mu_{\alpha}|^{2}$$

$$\mu = \arg \min_{\mu} E(A, \overline{\mu})$$
$$A = \arg \min_{\overline{A}} E(\overline{A}, \mu)$$

Local minima can exist

Model selection

- How to choose the number of clusters?
- Tradeoff between model complexity and objective function.

Neural implementation

- A single perceptron can learn the mean in its weight vector.
- Many competing perceptrons can learn prototypes for clustering data.

Batch vs. online learning

• Batch

- Store all data vectors in memory explicitly.

- Online
 - Data vectors appear sequentially.
 - Use one, then discard it.
 - Only memory is in learned parameters.

Learning rule 1

$$w_t = w_{t-1} + \eta x_t$$

Learning rule 2 $w_{t} = w_{t-1} + \eta_{t} (x_{t} - w_{t-1})$ $= (1 - \eta_{t}) w_{t-1} + \eta_{t} x_{t}$

• "weight decay"

Learning rule 2 again

$$\Delta w = -\eta \frac{\partial}{\partial w} \frac{1}{2} |x - w|^2$$

• Is there an objective function?

Stochastic gradient following

The average of the update is in the direction of the gradient.

Stochastic gradient descent

$$\Delta w = -\eta \frac{\partial}{\partial w} e(w, x)$$

$$\langle \Delta w \rangle = -\eta \frac{\partial E}{\partial w} \qquad E(w) = \langle e(w, x) \rangle$$

Convergence conditions

• Learning rate vanishes - slowly $\sum \eta_t = \infty$

- but not too slowly

 $\sum_{t}^{t} \eta_{t}^{2} < \infty$

Every limit point of the sequence w_t is a stationary point of E(w)

Competitive learning

• Online version of *k*-means

$$y_a = \begin{cases} 1, & \text{minimal } |x - w_a| \\ 0, & \text{other clusters} \end{cases}$$

$$\Delta w_a = \eta y_a \left(x - w_a \right)$$

Competition with WTA

• If the w_a are normalized

$$\underset{a}{\operatorname{arg\,min}} |x - w_a| = \underset{a}{\operatorname{max}} w_a \cdot x$$

Objective function

$$\left\langle \min_{a} \frac{1}{2} |x - w_a|^2 \right\rangle$$

Cortical maps

Images removed due to copyright reasons.

Ocular dominance columns

Images removed due to copyright reasons.

Orientation map

Images removed due to copyright reasons.

Kohonen feature map

$y_a = \begin{cases} 1, & \text{neighborhood of closest cluster} \\ 0, & \text{elsewhere} \end{cases}$

$$\Delta w_a = \eta y_a \left(x - w_a \right)$$

Hypothesis: Receptive fields are learned by computing the mean of a subset of images

Nature vs. nurture

- Cortical maps
 - dependent on visual experience?
 - preprogrammed?