## Backpropagation learning

## Simple vs. multilayer perceptron


output layer
hidden
layer
input
layer

## Hidden layer problem

- Radical change for the supervised learning problem.
- No desired values for the hidden layer.
- The network must find its own hidden layer activations.


## Generalized delta rule

- Delta rule only works for the output layer.
- Backpropagation, or the generalized delta rule, is a way of creating desired values for hidden layers


## Outline

- The algorithm
- Derivation as a gradient algoritihm
- Sensitivity lemma


## Multilayer perceptron

- L layers of weights and biases
- L+1 layers of neurons

$$
\begin{gathered}
x^{0} \xrightarrow{W^{1}, b^{1}} x^{1} \xrightarrow{W^{2}, b^{2}} \cdots \xrightarrow{W^{L}, b^{L}} x^{L} \\
x_{i}^{l}=f\left(\sum_{j=1}^{n_{l-1}} W_{i j}^{l} x_{j}^{l-1}+b_{i}^{l}\right)
\end{gathered}
$$

## Reward function

- Depends on activity of the output layer only.

$$
R\left(x^{L}\right)
$$

- Maximize reward with respect to weights and biases.


## Example: squared error

- Square of desired minus actual output, with minus sign.

$$
R\left(x^{L}\right)=-\frac{1}{2} \sum_{i=1}^{n_{L}}\left(d_{i}-x_{i}^{L}\right)^{2}
$$

## Forward pass

## For $l=1$ to $L$,

$$
\begin{aligned}
& u_{i}^{l}=\sum_{j=1}^{n_{l-1}} W_{i j}^{l} x_{j}^{l-1}+b_{i}^{l} \\
& x_{i}^{l}=f\left(u_{i}^{l}\right)
\end{aligned}
$$



## Sensitivity computation

- The sensitivity is also called "delta."

$$
\begin{aligned}
s_{i}^{L} & =f^{\prime}\left(u_{i}^{L}\right) \frac{\partial R}{\partial x_{i}^{L}} \\
& =f^{\prime}\left(u_{i}^{L}\right)\left(d_{i}-x_{i}^{L}\right)
\end{aligned}
$$

## Backward pass

$$
\begin{aligned}
& \text { for } l=L \text { to } 2 \\
& s_{j}^{l-1}=f^{\prime}\left(u_{j}^{l-1}\right) \sum_{i=1}^{n_{l}} s_{i}^{l} W_{i j}^{l}
\end{aligned}
$$



## Learning update

- In any order

$$
\begin{aligned}
\Delta W_{i j}^{l} & =\eta s_{i}^{l} x_{j}^{l-1} \\
\Delta b_{i}^{l} & =\eta s_{i}^{l}
\end{aligned}
$$

## Backprop is a gradient update

- Consider R as function of weights and biases.

$$
\begin{aligned}
\frac{\partial R}{\partial W_{i j}{ }^{l}} & =s_{i}^{l}{ }^{l}{ }_{j}^{l-1} & \Delta W_{i j}{ }^{l} & =\eta \frac{\partial R}{\partial W_{i j}{ }^{l}} \\
\frac{\partial R}{\partial b_{i}{ }^{l}} & =s_{i}^{l} & \Delta b_{i}{ }^{l} & =\eta \frac{\partial R}{\partial b_{i}{ }^{l}}
\end{aligned}
$$

## Sensitivity lemma

- Sensitivity matrix = outer product
- sensitivity vector
- activity vector

$$
\frac{\partial R}{\partial W_{i j}^{l}}=\frac{\partial R}{\partial b_{i}^{l}} x_{j}^{l-1}
$$

- The sensitivity vector is sufficient.
- Generalization of "delta."


## Coordinate transformation

$$
\begin{aligned}
u_{i}^{l} & =\sum_{j=1}^{n_{l-1}} W_{i j}{ }^{l} f\left(u_{j}^{l-1}\right)+b_{i}^{l} \\
\frac{\partial u_{i}^{l}}{\partial u_{j}{ }^{l-1}} & =W_{i j}{ }^{l} f^{\prime}\left(u_{j}^{l-1}\right) \\
\frac{\partial R}{\partial u_{i}{ }^{l}} & =\frac{\partial R}{\partial b_{i}{ }^{l}}
\end{aligned}
$$

## Output layer

$$
\begin{aligned}
x_{i}^{L} & =f\left(u_{i}^{L}\right) \\
u_{i}^{L} & =\sum_{j} W_{i j}^{L} x_{j}^{L-1}+b_{i}^{L} \\
\frac{\partial R}{\partial b_{i}^{L}} & =f^{\prime}\left(u_{i}^{L}\right) \frac{\partial R}{\partial x_{i}^{L}}
\end{aligned}
$$

## Chain rule

- composition of two functions

$$
\begin{gathered}
u_{l-1} \rightarrow R \quad u_{l-1} \rightarrow u_{l} \rightarrow R \\
\frac{\partial R}{\partial u_{j}^{l-1}}=\sum_{i} \frac{\partial R}{\partial u_{i}{ }^{l}} \frac{\partial u_{i}^{l}}{\partial u_{j}{ }^{l-1}} \\
\frac{\partial R}{\partial b_{j}^{l-1}}=\sum_{i} \frac{\partial R}{\partial b_{i}^{l}} W_{i j}{ }^{l} f^{\prime}\left(u_{j}^{l-1}\right)
\end{gathered}
$$

## Computational complexity

- Naïve estimate
- network output: order $N$
- each component of the gradient: order $N$
- $N$ components: order $N^{2}$
- With backprop: order $N$


## Biological plausibility

- Local: pre- and postsynaptic variables

$$
x_{j}^{l-1} \xrightarrow{W_{i j}{ }^{l}} x_{i}^{l}, \quad S_{j}^{l-1} \stackrel{W_{i j}{ }^{l}}{\longleftrightarrow} s_{i}^{l}
$$

- Forward and backward passes use same weights
- Extra set of variables


## Backprop for brain modeling

- Backprop may not be a plausible account of learning in the brain.
- But perhaps the networks created by it are similar to biological neural networks.
- Zipser and Andersen:
- train network
- compare hidden neurons with those found in the brain.


## LeNet

- Weight-sharing
- Sigmoidal neurons
- Learn binary outputs


## Machine learning revolution

- Gradient following
- or other hill-climbing methods
- Empirical error minimization

