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Simple vs. multilayer 
perceptron



Hidden layer problem

• Radical change for the supervised 
learning problem.

• No desired values for the hidden layer.
• The network must find its own hidden 

layer activations.



Generalized delta rule

• Delta rule only works for the output 
layer.

• Backpropagation, or the generalized 
delta rule, is a way of creating desired 
values for hidden layers



Outline

• The algorithm
• Derivation as a gradient algoritihm
• Sensitivity lemma



Multilayer perceptron

• L layers of weights and biases
• L+1 layers of neurons
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Reward function

• Depends on activity of the output layer 
only.

• Maximize reward with respect to 
weights and biases.

R xL( )



Example: squared error

• Square of desired minus actual output, 
with minus sign.
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Forward pass

For l =1 to L,
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Sensitivity computation

• The sensitivity is also called “delta.”
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Backward pass

for l = L to 2
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Learning update

• In any order
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Backprop is a gradient update

• Consider R as function of weights and 
biases.
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Sensitivity lemma

• Sensitivity matrix = outer product
– sensitivity vector
– activity vector

• The sensitivity vector is sufficient.
• Generalization of “delta.”
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Coordinate transformation
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Output layer
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Chain rule

• composition of two functions
ul−1 → ul → Rul−1 → R
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Computational complexity

• Naïve estimate
– network output: order N
– each component of the gradient: order N
– N components: order N2

• With backprop: order N



Biological plausibility

• Local: pre- and postsynaptic variables

• Forward and backward passes use 
same weights

• Extra set of variables
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Backprop for brain modeling

• Backprop may not be a plausible 
account of learning in the brain.

• But perhaps the networks created by it 
are similar to biological neural networks.

• Zipser and Andersen:
– train network
– compare hidden neurons with those found 

in the brain.



LeNet

• Weight-sharing
• Sigmoidal neurons
• Learn binary outputs



Machine learning revolution

• Gradient following
– or other hill-climbing methods

• Empirical error minimization
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