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Generative vs. Discriminative


1. Generative: 
• Estimate from data 
• Compute the discriminant function 
• 

2. Discriminative: 
• Estimate the discriminant from data 
• 

There are two schools of thought in Machine Learning: 

Last class 

class models 

Plug in your data – get the answer 

Plug in your data – get the answer 
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Density Estimation


Density Estimation is at the core of generative Pattern Recognition 

( ) ( )< < = � 
b 

a 

b 

( )x= � 

( ( )Tx xØ ø= - -º ß� 

Tx E x- -

[ = � 
[ |  ] ( | )y= � 

P a x  p x dx 

mean  :  [  ]  E x  p x dx 

[  ])(  [  ])  E x  E x  p x dx 

covariance  :  [(  [  ])(  [  ]) ]E  x  E x  

function  mean  :  (  )]  (  ) ( )  E f  x  f  x p x dx 

conditional  mean  :  E y  x  p  y  x dx 

Fall 2004 Pattern Recognition for Vision 



Refresher


| )i R x 
w 

w a= 

( | ) ( )
( | )  

( )  
P

P x 
p x  
w w 

w = 

( | ) ( |  | )R x L P xa a w w= 

[ ]* ( | ) ( )R R x 
w 

a= � 
Minimum expected risk: 

arg  min (  

p x  

)  (  

… is based on conditional risk: 

… which is computed from the posterior: 

… which depends on the likelihood: 

min  p x dx 
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Setting


NOTATIONALLY 

ip x  w ( )p x  

Goal: 
model the probability density function p(x), given a finite number of 
data points, x1, x2, …, xN, drawn from it. 

Data: 

1{ }C 
i iD D = = 

,j i i jw " „  

Keep in mind: ( | ) ( )i p xw „ 

- we abandon the class label: 

(  | )

Assume  that  D  contains  noinformation  about  

p  x  
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Three Methods


1. Parametric 
• Good: small number of parameters 
• Bad: choice of the parametric form 

2. 
• 
• Bad: large number of parameters 

3. 
• Good: combine the best of both worlds 
• Bad: harder to design 
• Good again: design can be subject to optimization 

Non-parametric 
Good: data “dictates” the approximator 

Semi-parametric 
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Parametric Density Estimation


Estimate the density from a given functional family 

Two methods of parameter estimation: 

1. Maximum Likelihood method 
• Parameters are viewed as unknown but fixed values 

2. Bayesian method 
• Parameters are random variables that have their distributions 

Given: 

Find: 

f xq q= 
q 

( |  )  (  , )  p  x  
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Normal (Gaussian) Density Function


( )1 
/ 2 1 /2  

1 1 
( ) ( )

) | | 2 
T 

d x xq m m 
p 

-� � = - - S -� �S Ł ł 

Number of 
dimensions of the 

covariance 

Squared 
Mahalanobis 

distance 

( , )q m= S 

[ ]E xm = 

( )TE x xm mØ ø- -º ß

 parametersd-

(d d- + 

Gaussian 

( |  )  exp  
(2  

p  x  

“Volume” 

)  (  S =  1) /  2 parameters 

A common assumption -
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Normal Density


0 
0 
0 

m 
Ø ø  
Œ œ= Œ œ  
Œ œº ß  

1 0  .5 
0 1  .3 

Ø ø 
Œ œS = Œ œ 
Œ œº ß 

Constant density, 1( ) ( )Tx x Cm m -- S - = 

Principal axes: eigenvectors of S 
Length: ,il l S 

S 

ellipsoid 

.5  .3 1  

- eigenvalues of  

- quadratic surface 

- Positive semidefinite 
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Whitening Transform


Define: 

( )( )S 

( )eigvec S 
Then: 

1/2  TW - F 
the data 

( ),x N  S0∼ 
For all: 

( ),N I0∼ 

diag  eigval L  =  - Scaling matrix 

F  =  - Rotation matrix 

=  L  -“Unscales” and “unrotates” 

Wx  
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Maximum Likelihood


Parameters are fixed but unknown. 

{ }1 2 , ,..., ND x x x” p(x) 

1 

( | ) ( | )  
N 

n 

n 

L p xq q q 
= 

” = � 

To find θ Maximize L(θ ) w.r.t. parameters. 

likelihood function 

( | )p x  q( )p x  

- a data set, drawn from 

Assuming that the data is drawn independently (i.i.d.): 

(  )  p  D  - a 

Notationally, we make density explicitly dependent on parameters: 
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Maximum Likelihood


To find θ set the derivative to 0: 

1 

( | ) 0  
N 

n 

n 

l p xq qq q 
= 

� = � =� 

And solve for θ 

Maximizing L(θ ) is equivalent to maximizing : 

11 

( | ) ( | )  
N N 

n n 

nn 

l L p xq q q q 
== 

” = = �� 

(  )  log  

log-likelihood function

(  )  log  (  )  log  log  p  x  
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Quick Summary – ML Parameter Estimation


ˆ( | )p x q 

( | )p D  
q 

q 

1 

( | )q 
= 

� 
N 

n 

n 

p x  

( | , | )
( | ) ( | , )  

( | )  
i i i i 

i i i 
i 

P
P x P x 

p x  
w q

w w q 
q 

= = 

we pick that 

easy 

argmax  

)  (  p x  w q  
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Solving a Maximum Likelihood Problem


( | )qp D  ( | )qp D  

q̂ q̂ 

some candidatesFixed covariance: 

log  

Fall 2004 Pattern Recognition for Vision 



Maximum Likelihood Example


In 

[ ] 11 1 
( ) ( )

2 2 2 
n T n 

n 

d
l x xq qq p m m -� �� = � - - - S -� �º ß� �

� 

11 ˆ( ) 0
2 

n 

n 

l xm q m -� S - = �� 

1 

1ˆ 
N 

n 

n 

x 
N 

m 
= 

= � 

Solving for the mean: 

d-dimensions: 

(  )  log  2  log  Ø S ø -

(  )  = -

- arithmetic average of samples 
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Maximum Likelihood Example (cont.)


[ ] 11 1 
( ) ( )

2 2 2 
n T n 

n 

d
l x xq qq p m m -� �� = � - - - S -� �º ß� �

� 

{ }1 1 11 ˆ ˆ ˆˆ ˆ( ) 0 
2 

n n T 

n 

l x xq m m - - -
S� S - - S = �� 

( )( ) 
1 

1ˆ ˆ ˆ 
N Tn n 

n 

x x 
N 

m m 
= 

- -� 

( )1 
1 1 

T 
Tb M  

dM 

-
- -=1d M  

M M  
dM 

-=For symmetric M: and 

biased 

Solving for the covariance: 

(  )  log  2  log  Ø S ø -

(  )  )(  = - - S  

S =  

d a M b  
M  a

-arithmetic average of  
indiv. covariances 
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Recursive ML


What if data comes one sample at a time? 

1 

1 1 

1 1ˆ 
N N 

n N n 
N 

n n 

x x x 
N N 

m 
-

= = 

Ø ø = = +Œ œ
º ß

� � 

( ) 1 1 1 

1 1ˆ ˆ ˆ1N N 
N N Nx N x 

N N 
m m m- - -Ø ø Ø ø= + - = + -º ß º ß 

This estimate “stiffens” with more data (as it should). 

One idea – fix the fraction. Then the estimate can track 
a non-stationary process 
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Recursive ML


Fix the update rate and retrace the steps: 

1 1 1)N N 
N N N Nv v x v v xg g g- - -Ø ø= + - = - +º ß 

nmn v 

2 1 
2) ) N N 

Nv x xg g -
-= - + - + 

1 

) ) 
M 

M M k k 
N M  

k 

v xg g g -
-

= 

= - + -� 

(1  

(1  (1  g g  

(1  (1  Recency weights 
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Simple Example


Several images from a static camera: 

( )1t tx I I -= -

How much noise is in it? 

0m = 
1.2s = 

Now we can set a threshold that will 
statistically distinguish pixel noise 
from an object 

vec  
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Problems with ML


We are given two estimates: 

Which one do we believe? 

µ1, Σ1 µ2, Σ2 

True 
distribution 

ML gives a single solution, regardless of uncertainty. 
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Bayesian Parameter Estimation


In classification our goal so far has been to estimate ( | )wP x 

Let’s make the dependency on the data explicit: 

( | ,
( | , )  i i 

i 

D
P x D  

w w 
w = 

( | )iP Dw 

What about ( | , )i Dw ? 

)  ( | )  
(  | )  

p x  D P  
p x D  

(  | )  P x D  

- this is easy to compute 

- this is easy to compute by marginalization 

p x  
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Bayesian Parameter Estimation 

This is a supervised problem so far: 

{ }( )1...
( | , ) | ,i i j j N 

D Dw w 
= 

= 

{ }1 2, ,..., ND D= 

( | , )  i i 
i 

D
P x D  

p x D  
w w 

w = 

| )
( | , )  i i i 

i 

D
P x D  

w w 
w = 

{ }( ) ( )| ,  , | ,i i j i ij i  
Dw w 

„ 
= = 

p x  p x  

D  D  

(  | ,  )  ( | )  
(  | )  

p x  D P  

(  | ,  )  (  
(  | )  

p x  D  P  
p x D  

p x  D  D  p x  
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Bayesian Parameter Estimation


We will assume that we can obtain “labeled” data, so again: 

x given the data D. 

w i iD 

We assume the form of p(x D: 

( | )p x  q( )p x  

θ as a random variable 

Notationally: 

Now our problem is to compute density for 

(  | , )p  x  (  | )  p  x D  

) – the source density for 

… and treat 
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Bayesian Parameter Estimation


( | ) ) ( |  , ) (  | )D D dq q q q q= =� � 
Data predicts the new sample 

Average densities p(x|q) for ALL possible values of q weighted by 
its posterior probability 

Instead of choosing a value for a parameter, we use them all: 

( | ) (  | )p D dq q q= � 
We chose the form 

of this 
What is this? 

x is independent of D given q 

(  , |  p  x  p  x  D  d  p  x  D  p  

p  x  
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Bayesian Parameter Estimation 

( 
(

q = 
� 

p
p D 

p d 

1 

( | ) ( | )q q 
= 

= � 
N 

n 

n 

p x  

Using independence: 

What is this? 

Computing the posterior probability for q : 

Bayesian method does not commit to a particular value of θ, but uses 
the entire distribution. 

( | ) (  | )p D dq� 

Prior belief about 
the parameters 

)| )  ( )  
(  | )  

| )  ( )  
q  q  

q  q q  
p  D  

p  D  

Using Bayes rule: 

p  D  

p  x  q  q  

(denisty
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Quick Summary – Bayesian Parameter Estimation


q� p D d  

( | )  ( )  
( )  

p 
p D  

1 

( | )q 
= 

� 
N 

n 

n 

p x  

( | ) ( | , )  i i i 
i i 

D P D
P x P x D  

w w 
w w= = 

hard 

we pick that we “know” this*, ** 

easy 

introduce bias 

** Conjugate prior p(q |D) 
have the same functional form as 
p(D|q ) 

hard 
( | ) (  | )  q q  p  x  

q q  p  D  

(  | ,  )  ( | )  
(  | )  

p  x  
p  x D  

* Non-informative prior – doesn’t  

– causes 
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Bayesian Parameter Estimation 

Parameter prior 

Parameter posterior 

ML solution 

Bayesian solutionposterior 

weighted 
likelihoods 

( | ) (  | )p D dm�=For : 
p x  m  m  q m  
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2 
0 0 

1 

( |  ) ( )
( |  ) ( | ) ( , ) ( , )

( )  

N 
n 

N N N 
n 

p
p D p x

p D  
m m 

m a m m s  
= 

Ø ø 
= = =Œ œ

º ß
� N N 

First let’s deal with the parameter: 

fixed 

This is a Gaussian 

( | ) (  | )p D dm m m� 

2( |  ) ( , )p x  m m s= NLikelihood: 

2 
0 0( ) ( , )p m m s= NParameter prior: 

( | )p DmNeed to find: 

Need 
these 

Bayesian Parameter Estimation - Example 

p  D  
m s  

p  x  

Bayes rule again: 

N-sample parameter posterior 
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Bayesian Parameter Estimation - Example


2 2 
0 

02 2 2 2 
0 0 

s s 
m m 

s s s s 
= + 

+ +N 

N 
x 

N N 

2 2 2 
0 

1 1 1 

N 

N 
s s s 

= + 

After some algebra and identifying the terms: 

With increasing N covariance of the posterior decreases and the prior 
becomes unimportant. 

( |  ) ( , )N N Np Dm m s= N 

So, the posterior is a Gaussian 

- when Gaussians multiply – precisions add 

… and 
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Bayesian Parameter Estimation - Example


Now the integral: 

( | ) ( | ) (  | )D p D dq= � 
2 2 2 2( , ) ( , ) ( , )N N N Ndm s m s= = +� N N N 

You can show that it 
is also a Gaussian 

Any guesses about why Gaussian is such a common assumption? 

p  x  p  x  q  q  

m s  m s  
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For N

1 

( | ) ( | )  
N 

N n 

n 

p xq q 
= 

= � 
1 

1 

1 

( | ) ( | ) ( | )  
N 

N n N N 

n 

p Dq q q q 
-

-

= 

= =� 

From this the recursive relation for the posterior: 

1( | ) ( )
( | ) 

( ) 

N N 
N 

N 

p
p D 

p D  
q

q 
-

= 
1 

1 

( | ) (  | ) 
( | ) (  | ) 

N N 

N N 

p D 
p D dq 

-

-
= 

� 

( | ) (  | )p D dq� 

Recursive Bayes 

-point likelihood: 

p D  

| )  (  p x  p x  p x  

| )  (  p x  p D  q q  

p x  
p x  

q q  
q q  

p x  q q  
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Recursive Bayes (cont.)


1 

1 

( | ) (  | )
( | ) 

( | ) (  | )
q 

q 

-

-
= 

� 

N N 
N 

N N 

p D 
p D 

p D d 

Again: 

Setting N=1: 

2 2 
1 

12 2 2 2 
1 1 

s s 
m m -

-
- -

= + 
+ + 
n 

n n 
n n 

x 

2 2 2 
1 

1 1 1 

-

= + 
n n 

q q  
q q  

p  x  
p  x  

- 1-point update. 

s  s  s  s  

s  s s
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Recursive Bayes (cont.)


( | )p x q 

( | )Np Dq 

1N = 

2N = 

10N = 
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Problems with Bayesian Method


1. Integration is difficult 
2. Analytic solutions are only available for restricted class of 

densities 
3. Technicality: If the true p(x|q) is NOT what we assume it is, 

the prior probability of any parameter setting is 0! 
4. Integration is difficult 
5. Did I mention that the integration is hard? 
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Relation between Bayesian and ML Inference


( | ) (q q q�p D p 

( | ) ( ) ( )q q q q 
Ø ø 

= =Œ œ
º ß
� n 

n 

p L p 

ˆpeaks at q ML 

If the peak is sharp and p(θ ) is flat, then: 

( | ) q q q= � p D d  

ˆ ˆ ˆ( | ) (  | ) ( |  ) ( | ) ( | )q q q q q q q= =� �� p p p x  

ˆAs ,  ( | ) ( | )q«N p x  

| )  ( )  p D  

(  )  p x  

( | ) (  | )  p x  D  p x  

p x  D d  p x  D d  

fi ¥  p x  D  
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Non-Parametric Methods for Density Estimation


1. Histograms 
2. Kernel Methods 
3. 

p(x) 

K-NN method 

Non-parametric methods do not assume any particular form for 
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Histograms


ˆ ( )p x  

x lands in the i

1 

( 
= 

= ˛ " =� 
N 

i 
j 

R i M 

1 

( )ˆ ( )  
( )  

= 

= 

� 
M 

j 

H i
P i  

H j  

(  )  is a discrete approximation  of P x  

• Count a number of times that -th bin 

• Normalize 

(  )  ),  1,  2,..., H i  I x  
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Histograms


( )p x  ˆ ( )P x  ( )p x  
ˆ ( )P x  

( )p x  ˆ ( )P x  

3=M 20=M 

50=M10=M 

How many bins? 

( )p x  
ˆ ( )P x  

“Overfitting” 

“Oversmoothing” 
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Histograms


Good: 

Bad: 
M 

• Once it is constructed, the data can be discarded 
• Quick and intuitive 

• Very sensitive to number of bins, 
• Estimated density is not smooth 
• Poor generalization in higher dimensions 
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Aside: Curse of dimensionality (Bellman, ‘61):


Hue) 

Saturation) 

Value) 

dN b= 

• Imagine we build a histogram of a 1-d feature (say, 
• 10 bins 
• 1 bin = 10% of the input space 
• need at least 10 points to populate every bin 

• We add another feature (say, 
• 10 bins again 
• 1 bin = 1% of the input space 
• we need at least 100 points to populate every bin 

•We add another feature (say, 
• 10 bins again 
• 1 bin = 0.1% of the input space 
• we need at least 1000 points to populate every bin 

- number of points grows exponentially 
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- -

- -

Aside: Curse Continues


d 
lV l= 

( )dV le e= -

( )d d 
lV V l le e- = 

( ) 
1 1 1 !!!!! 

dd d 

d 
l 

l l 
V l l 

e eD � � = = - - fi  fi ¥� �
Ł ł 

Volume of a cube in Rd with side l: 

Volume of a cube with side ε: 

Volume of the ε : 

Ratio of the volume of the ε : 

D =  

as d  

l-

-shell

-shell to the volume of the cube
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Aside: Lessons of the curse


In generative models: 
• Use as much data as you can get your hands on 
• Reduce dimensionality as much as you can get away with 

<End of Digression> 
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General Reasoning


( ) (˛ = = � 
R 

R P dx 

If we have N i.i.d. points drawn form p(x): 

!
(| | ) ) ( , )

)! 
-˛ = = - = 

-
k N kN

P x R k P P B N P  
k N k  

k of 
particular 

rest are notNum. of unique splits 

B(N, P) is a binomial distribution of k 

By definintion: 

') '  P  x  p  x  

(1  
!(  

Prob that 
x-es are in R 

Prob that the 

K vs. (N-K) 
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General Reasoning (cont.)


Mean and variance of B(N, P): 

[ ]m = = NP 
2 2 )s m= - = -E k P 

� =P 

( ) 
2 

2/ ) /
sØ ø� - = = -º ßE k N P P P N  
N 

That is: 
• E[k/N] is a good estimate of P 
• P is distributed around this estimate with vanishing variance 

Mean: 

Variance: 

So: 
/�P k N  

E  k  

[(  )  ]  (1  NP  

[  / ]  E  k N  

(1  �  �  
�  �  
Ł  ł  
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General Reasoning (cont.)


On the other hand, under mild assumptions: 

( ' ( )= � � 
R 

P x 

/� 
So: 

( )  � k 
p x  

NV 

Volume of R 
(not p(x)) 

V 

x 

p(x) 
')  p x  d p x V  

P  k N  

… which leads to: 
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General Reasoning (cont.)


( )  � k 
p x  

NV 

Now, given N p(x)? 

Fix k and vary V 
until it encloses k 

points 

Fix V and count how 
many points (k) it 

encloses 

(KNN) Kernel methods 

data points – how do we really estimate 

K-Nearest Neighbors 
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Kernel Methods of Density Estimation


Mathematically: 

1 | | 1/ 2 
( )  

0 otherwise 

< =� 
= � 

� 

jy j d 
H y 

We choose V by specifying a hypercube with a side h: 

= dV h  

1/2 

1 

kernel function: 

0,‡ "H y y 1=� H dy yand 

1,..., 

(  )  (  )  
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Parzen Windows


Then 

( )( )/- nH hx x  h centered at xn 

H can help count the points in a volume V around any x: 

1 

( )  
nN 

n 

x x
H 

h= 

� �-
= � � 

Ł ł 
� 

x1 

x2 
h x 

No contribution 
to the count at x 

- a hypercube with side 

k  x  

-neighborhood of 

Fall 2004 Pattern Recognition for Vision 



Rectangular Kernel


1 

( )  
nN 

n 

x x
H 

h= 

� �-
= � � 

Ł ł 
� 

1 

1 1
( )  

nN 

d 
n 

x x
H 

NV N h h= 

� �-
= = � � 

Ł ł 
�� 

x: 

Subtle point: 

( ) ( ) 
1 1 

1 1 
, , 1 

N N 
n n 

n n 

dx dx 
N N= = 

Ø ø Ø ø= =Œ œ º ßº ß
� �� � 

1� =� � 

( ), n 

Integrates to 1 

k x  

… is easily converted to the density estimate: 

(  )  k x  
p x  

So the number of points in h-neighborhood of 

K  x x  K  x x  

(  )  p x dx 

K  x x  
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Example


Source 

h=2 h=4 

h=1 
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Smoothed Window Functions


We can choose a smoother function, s.t.: 

0,‡ "� x 1=� �and 

2 
1 

1 1 
exp 

2( 2 )p= 

� �-
� �= -
� �
Ł ł 

�� 
nN 

d 
n 

x x  
p x  

N hh 

Ensured by kernel conditions 

2 

1
( , ) exp 

2( 2 ) 

n 
n 

d 

x x  
K x x  

hhp 

� �-
� �= -
� �
Ł ł 

The problem is as in histograms – it is discontinuous 

(  )  p  x  (  )  p x  dx 

Eg: <loud cheer> a (spherical) Gaussian: 

(  )  

… so: 
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Example


Source 

h=1.0 h=1.3 

h=0.6 
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Some Insight


possible datasets: 

[ ] [ ] 
1 

1 
( , ) ( , ') 

N 
n 

n 

E E E K x x  
N = 

Ø ø 
= =Œ œº ß

�� 

( )' (K x x dx= -� 

if ( , ( , ')x xd= =� 

But not for the finite data set! 

That is: 

Interesting to look at expectation of the estimate with respect to all 

(  )  p  x  K x  x  

') '  p  x  - convolution with true density 

(  )  (  )  ')  p  x  p  x  K x  x  
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Conditions for Convergence


How small can we make h for a given N ? 

0d 
NN 

h 
fi¥ 

= 

lim d 
NN 

Nh 
fi¥ 

= ¥  

0 

1/N 

Based on the similar analysis of 
variance of estimates 

1 /d d 
Nh h N= 

1 /d d 
Nh h N= 

Note that the choice of is still up to us.1 
dh 

lim  - It should go to 

- But slower than 

Eg: 

log( )  
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Problems With Kernel Estimation


• Need to choose the width parameter, h 

• Can be chosen empirically 
• hj jk djk the distance from 

xj to k

• Need to store all data to represent the density 

• Leads to Mixture Density Estimation 

Can be adaptive, eg. = hd – where 
-th nearest neighbor 
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K-Nearest Neighbors


( )  =� k 
p x  

NV 

Recall that: 

Now we fix k (typically )=k N and expand V to contain k points 

This is not a true density! 

N=1, k=1. Then: 

1 

1
( )  

1 
= 

� -
�p x  

x x  
Oops! 

BUT it is useful for a number of theoretical and practical reasons. 

Eg.: choose 

Fall 2004 Pattern Recognition for Vision 



K-NN Classification Rule


N 
jN w j 

K x 

jK w j among K 

Data: 

Need to find the class label for a query, x 

x 

Expand a sphere from x to include K points 

Let’s try classification with K-NN density estimate 

- total points 
- points in class 

- number of neighbors of 
- points of class 
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KNN Classification


( | )w = =j j j 
j 

j 

K N KNV 
p x 

N K K 

Then for minimum error rate classification: 

= j
j 

C K 

Then class priors are given by: ( )w = j 
j 

N 
p 

N 

We can estimate conditional and marginal densities around any x: 

( | )w = j 
j 

j 

K 
p x  

N V  
( )  = 

K 
p x  

NV 

N  V  
By Bayes rule: 

arg  max 
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KNN Classification


Important theoretical result: 

In the extreme case, K=1, it can be shown that: 

* * *2 
1 

� �£ £ -� �-Ł ł 

c
P P P P 

c 

( )
fi¥ 

= NN 
P P errorfor lim  

That is, using just a single neighbor rule, the error rate is at most 
twice the Bayes error!!! 

N-sample error rate 
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Problems with Non-parametric Methods


every time 

• Memory: need to store all data points 
• Computation: need to compute distances to all data points 

• Parameter choice: need to choose the smoothing parameter 
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Mixture Density Model


1= 

= � 
M 

j 

j P j  

Uses MUCH less “kernels” than kernel methods 
Kernels are parametric densities, subject to estimation 

Mixture model 

Component 
density 

Component 
“prior” 

1= 

=� 
M 

j 

P j0,‡ "P j j and 

Number of components 

(  )  ( | )  ( )  p  x  p  x  

– a linear combination of parametric densities 

(  ) 1  (  )  
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Example


1= 

= � 
M 

j 

j P j(  )  ( | )  ( )  p x  p x  
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Mixture Density


1 

1 

1 ( 
( 

N 
n 

M 
nn j 

k 

j P j  
k P k  q= 

= 

¶= 
¶� 

� 

Using ML principle, the objective function is the : 

1 11 

( ) ( 
N N M 

n n 

n jn 

l j P jq 
= == 

� �
” = � � 

� � 
� �� 

1 1 

(
j 

N M 
n 

n kj 

l k P kq q 
q= = 

¶ � �
� = � �¶ � �

� � 

Differentiate w.r.t. parameters: 

| )  ( )  
| )  ( )  

p  x  
p  x  

log-likelihood

(  )  log  log  | )  ( )  p  x  p  x  

(  )  log  | )  ( )  p  x  
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Mixture Density


Again let’s assume that p(x|ω) is a Gaussian 

We need to estimate M priors, and M

1 

1 

( )  ˆ( | ) ( ) 
N 

n n 
j j 

nj 

l 
x

q 
m 

m 
-

= 

¶ Ø ø= S -º ß¶ � 

Setting it to 0 and solving for µj: 

1 

1 

ˆ 

N 
n n 

n 
j N 

n 

n 

P j x  
m = 

= 

= 
� 

� 

sets of means and covariances 

P j x  

(  | )  

(  | )  

P j x x  
- convex sum of all data 
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Mixture Density


1 1 1 
2 

1 

( )  ˆ ˆ ˆˆ ˆ( | ) ( ) 
N 

n n n T 
j j j j j 

nj 

l 
x x

q 
m m 

s 
- - -

= 

¶ Ø ø= - - -º ß¶ � S S S 

Setting it to 0 and solving for Σi: 

( ) ( ) 
1 

1 

ˆ ˆ 
ˆ 

N Tn n n 
j j 

n 
j N 

n 

n 

x x 

P j x  

m m 
= 

= 

- -
= 

� 

� 
S 

Similarly for the covariances: 

)(  P j x  

(  | )  

(  | )  

P j x  
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Mixture Density


A little harder for P(j

( ) 
1 

1 0, 
M 

j 

P j and P  j j 
= 

= ‡ "� 

Here is a trick to enforce the constraints: 

1 

( )  j 
M 

k 
k 

P j  
g 

g 
= 

= 

� 
( )  

( 
j 

P i  
i j P jd 

g 
¶ 

= - -
¶ 

) – optimization is subject to constraints: 

(  )  

exp( )  

exp( )  

)  (  )  (  )  ( )  P i P j  
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Mixture Density


Using the chain rule: 

( ) 
1 1 1 

( | )  
( ) ( )

( )j 

nM M N 

jk 
k k nj 

l
l P j

P xg 

qq d 
g= = = 

¶ ¶� = = -
¶ ¶� �� 

1 1 

( | ) ( | )  
( )  

n nN M 

n k 

j 
P j 

P x= = 

� � 
= -� � 

� � 
� � 

{ } 
1 

( | ) 0 
N 

n 

n 

P j  
= 

= - =� 
1 1 

( | ) 
N M 

n n 

n k 

P j 
= = 

� � = -� �
� �

� � 

1 

1 N 
n 

n 

P j P j x
N = 

= � 

(  )  (  )  
(  )  (  )  

(  )  
P k  p x k  

P  j P k  
P k  

(  )  (  )  ( )  
(  )  

p x  p x k  
P  j P k  

P x  

(  )  P j  x  (  )  (  | )  P j  x  p k x  

The last expression gives the value at the extremum: 

(  )  (  | )  
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Mixture Density


What’s the problem? 

1 

1 N 
n 

n 

P j P j x
N = 

= � 

( )( ) 
1 

1 

ˆ ˆ 
ˆ 

N Tn n n 
j j 

n 
j N 

n 

n 

x x 

P j x  

m m 
= 

= 

- -
= 

� 

� 
S 

1 

1 

ˆ 

N 
n n 

n 
j N 

n 

n 

P j x  
m = 

= 

= 
� 

� 

We can’t compute these directly! 

(  )  (  | )  

(  | )  

(  | )  

P j x  

(  | )  

(  | )  

P j x x  

Solution – EM algorithm. We will study it in Clustering. 
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