Hints for Problem 15.26

Some of the parameters required to solve 15.26 (S\&H) need to be found in the literature (e.g. Perry's). We have provided those below to save time:

1. The concentration of water in air at $80^{\circ} \mathrm{F}, 1 \mathrm{~atm}$ and 80% relative humidity (from psychrometric chart)

$$
=\frac{0.0177 \mathrm{lb} \mathrm{H}_{2} \mathrm{O}}{\text { lb dry air }}
$$

2. The diffusivity of water vapor in air at $1 \mathrm{~atm}, 80^{\circ} \mathrm{F}$

$$
\mathrm{D}_{\mathrm{i}}=0.26 \times 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

3. The viscosity of air at $80^{\circ} \mathrm{F}$

$$
\mu=1.75 \times 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \mathrm{~s}}
$$

Additional advice:

- Pay attention to units throughout the problem.
- You can use the ideal gas law to calculate the density (in lb/ft ${ }^{3}$) of the gas entering the bed, which is a mixture of water vapor and air.
- Assume that the cross-sectional area of the bed is $1 \mathrm{ft}^{2}$.
- Use the equation $\rho_{\mathrm{p}}=\frac{\rho_{\mathrm{b}}}{1-\epsilon_{\mathrm{b}}}$ to calculate ρ_{p}, the particle density, (lb gel/ ft^{3} particles) from the density of the silica given in the problem statement $\rho_{\mathrm{b}}=39 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$ and the void fraction $\epsilon_{\mathrm{b}}=0.47$.
- The units of the equilibrium constant, K , should be in $\frac{\mathrm{lbH} \mathrm{H}_{2} \mathrm{O} / \mathrm{ft}^{3} \text { gel }}{\mathrm{lbH}_{2} \mathrm{O} / \mathrm{ft}^{3} \text { gas }}$ to use Equation 15-106 (S\&H).
- If using Excel to solve the Klinkenberg equation, use erf carefully and remember that erf $(-z)=-\operatorname{erf}(z)$.

