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Organization

• Purposes of the course:

• Ensure that you are aware of the wide range of easily 
accessible numerical methods that will be useful in 
your thesis research, at practice school, and in your 
career.

• Make you confident in your ability to look up and 
apply additional methods when you need them.

• Help you become familiar with MATLAB, other 
convenient numerical software, and with simple 
programming/debugging techniques.

• Give you an understanding of how common numerical 
algorithms work and why they sometimes produce 
unexpected results.
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Organization
• Resources:

•  website – details on grading, homework 
policy, and homework submission guidelines.

• Textbook – Beers, “Numerical Methods for Chemical
Engineering”.  Notes will be placed on .
Additional text references are given in the syllabus.

• MATLAB tutorials

• Peers – you are encouraged to discuss the course
material, programming, and the homework with your
colleagues.  Be aware of the homework policy outlined
in the syllabus, however.

• TAs and instructors – we are here to help you, and
available for meetings, usually within 24 hours.
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Organization

• When to stop:

• The homework for the course should require 9 hours 
per week on average – perhaps a little more early on if 
you are not proficient with MATLAB.  

• Sometimes you may find a homework problem is 
consuming an inordinate amount of time even after 
you have asked for help.

• If this happens, just turn in what you have completed 
with a note indicating that you know your solution is 
incomplete, details about what you think went wrong, 
and what you think a correct solution would look like.
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Organization

• Linear algebra

• Solutions of nonlinear equations

• Optimization

• Initial value problems

• Differential-algebraic equations

• Boundary value problems

• Partial differential equations

• Probability theory

• Monte Carlo methods

• Stochastic chemical kinetics
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Numerical Methods
• Motivation:

• Most real engineering problems do not have an exact 
solution.  Even if there is an exact solution.  Can it be 
evaluated exactly?

• Application of computational problem solving 
methodologies can lead to transformative (as opposed 
to incremental) engineering solutions.

• Algorithms to solve problems numerically should be:

• clear

• concise

• able to solve the problem robustly

• use realistic amount of resources

• execute in a realistic amount of time 7



Numerical Error
• Virtually all computer problem solving is done

approximately.  It is essential to quantify the error in
these calculations.

• Example: representation of numbers

• Example: calculating the square root
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Numerical Error
• Overflow/underflow – exceeding the largest/smallest

representable number

• Example: 1.3x1045 (nm)3 =1.3x109 (km)3

• Solution: rescaling

• Truncation:

• Computers have a finite amount of memory/time to
work with.  Most algorithms work within these
constraints to return answers which are accurate to
within some tolerance.

• Solution: the design of algorithms that quickly
minimize truncation error

• Example: Leibniz vs. Newton
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Numerical Error
• Truncation (cont.):

• Example: Leibniz vs. Newton

• Absolute error:

• Relative error:
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Numerical Error

• Truncation (cont.):

• Example: 2x10-4 + 1x10-13 = ? with 8 digit accuracy

• Estimate the absolute error in this calculation.

• Estimate the relative error in this calculation.

• Quantifying and minimizing numerical error is a key aspect 
developing numerical algorithms.  

• Even simple calculations introduce numerical errors.

• Those errors can compound and magnify.  We will see 
how shortly.
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Linear Algebra
• Primarily concerned with the solutions of systems of 

linear equations

• Is there a solution?

• If there is a solution, is it a unique?

• Is it possible to find the solution or family of solutions?

• Chemical engineering example: mass balances

separator, 2:1

?

?

2 Systems of linear equations

2.1 Motivation

While the notion of a system of linear equations may seem trivial, many
numerical solution techniques invariably reduce complicated problems
to the solution of such systems. Of course, there is the simplest linear
equation ax = b, which has the obvious solution x = b/a. But even
in such a simple context there is a complication. If a = 0 when b 6= 0,
no value of x solves the equation. If a = 0 and b = 0 as well, every
value of x solves the equation. Thus, there are either 0, 1 or an infinite
number of solutions. For systems of linear equations, similar, but more
sophisticated, difficulties arise though again either 0, 1 or an infinite
number of solutions exists. To understand, anticipate and correctly
handle such pitfalls, a deep understanding of linear algebra is necessary.

Begin with this simple and familiar chemical engineering problem:
3 kg/s of material enters a separator and is split into two streams with
mass flow rates, ṁ1 and ṁ2. Stream 2 carries twice the material in
stream 1. At what rate does material leave the separator in each stream?
Although the answer is obvious – 1 kg/s in stream 1 and 2 kg/s in
stream 2 – construct a system of equations reflecting a mass balance
and the efficiency of the separator:

ṁ1 + m2 = 3

ṁ2 = 2ṁ1

˙ mass balance,

and

ṁ2 = 2ṁ1 separation constraint.

This pair of equations can be re-expressed in the form of a matrix-vector
product, Ax = b:
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Linear Algebra

8 10.34: numerical methods, lecture notes

is a 2 ⇥ 2 matrix containing the coefficients of the system of equations
and

x =

 

ṁ1
ṁ2

!

, b =

 

3
0

!

,

are vectors containing the unknowns, ṁ1 and ṁ2, and the inhomo-
geneities in the system of equations, respectively. There are two partic-
ularly useful ways to view the this system of equations and its solution
termed the row-view and the column-view.

In the row-view, examine each row of equation 2.1,

ṁ1 + ṁ2 = 3
�2ṁ1 + ṁ2 = 0

.

These represent lines in the (ṁ1, ṁ2) plane. The values of ṁ1 and ṁ2

which satisfy these equations must correspond to either a single point
(the lines cross), all values on a single line (the lines are coincident) or
no values at all (the lines are parallel and never intersect). As shown
in figure 2.1 these lines intersect when ṁ1 = 1 and ṁ2 = 2. The other
possibilities, infinitely many solutions and no solution can be easily
sketched as well.
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ṁ
2
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0

(1, 2)

Figure 2.1: The row-view of the system
of equations (eq. 2.1). The first row of the
equation represents the blue line, while
the second represents the red line. Their
intersection specifies the solution to the
system of equations.

For the column-view, equation 2.1 may be rewritten as:

ṁ1

 

1
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+ ṁ2

 

1
1
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. (2.2)

The solution, ṁ1 and ṁ2, can be seen as the appropriate weights for the
summation of two vectors. Thus solving this problem requires asking:
what scalar multiples of the vectors (1, �2) and (1, 1) will sum to (3, 0)?
This process is depicted in figure 2.2. It is easy to see that if the columns
in the matrix are parallel, there might be a problem. For instance, if
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• Row-view: 

• Each row in the system of 
equations describes a line.  

• The solution represents the 
intersection of these lines.

• For dimensions higher than 2, the 
solution is an intersection of 
other linear manifolds

• How many solutions does the 
equation: ax=b, have?
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Linear Algebra

• Column view: 

• Each column in the system of 
equations describes a vector.  

• The solution represents the 
correct weighting of these 
vectors.

• While conceptually more difficult, 
the column view is easier to 
extend to arbitrarily high 
dimensions.  You will see why later.

systems of linear equations 9

those columns are also parallel to the vector on the righthand side,
there are infinitely many solutions. If they are not parallel to the vector
on the righthand side, there are no solutions.

Figure 2.2: The column-view of the sys-
tem of equations (eq. 2.1. The first col-
umn of matrix A is represents by the blue
vector while the second column is repre-
sented by the red vector. The righthand
side of the system of equations is repre-
sented by the green vector. Adding two
parts red to one part blue by connecting
the vectors head-to-tail yields the desired
vector, green.

Other interesting systems linear equations can be formulated from
the same simple example:

• Suppose the inlet mass flow rate, denoted ṁ0 is unspecified. There
are more unknowns than equations:
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Such a problem is said to be rank deficient. In the row view, each
equation represents a plane passing through the origin. If the planes
are not parallel, then their intersection is necessarily on a line through
the space (ṁ0, ṁ1, ṁ2), and there are infinitely many solutions which
reside this line. Chemical engineers are taught to assume a basis
for one of the unknowns in such circumstances. This automatically
selects the values of the other two unknowns from the line.

• Suppose that the inlet flow rate is 3 kg/s again and that the flow
rate of stream 1 is measured with a flow meter. The measurement of
this flow rate is, ṁ1 = 1 + d, and contains an error, d. There are more
equations than unknowns:
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Such a problem is said to be over-constrained. If the error in the
measurement of stream 1 is zero, then ṁ2 = 2 and there is an exact
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For the column-view, equation 2.1 may be rewritten as:
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The solution, ṁ1 and ṁ2, can be seen as the appropriate weights for the
summation of two vectors. Thus solving this problem requires asking:
what scalar multiples of the vectors (1, �2) and (1, 1) will sum to (3, 0)?
This process is depicted in figure 2.2. It is easy to see that if the columns
in the matrix are parallel, there might be a problem. For instance, if
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Linear Algebra
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systems of linear equations 9

those columns are also parallel to the vector on the righthand side,
there are infinitely many solutions. If they are not parallel to the vector
on the righthand side, there are no solutions.
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ṁ2

1

C

A

=

 

0
0

!

. (2.3)

Such a problem is said to be rank deficient. In the row view, each
equation represents a plane passing through the origin. If the planes
are not parallel, then their intersection is necessarily on a line through
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15

Row-view:

Column-view:



Linear Algebra
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ṁ2

⌘

=

 

3 � (1 + d)
2(1 + d)

!

. (2.4)

Such a problem is said to be over-constrained. If the error in the
measurement of stream 1 is zero, then ṁ2 = 2 and there is an exact
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Solving Systems of Equations

17

In MATLAB:

x = A \ b

ax = b ) x = a

�1
b

Ax = b ) x = A

�1
b



Scalars, Vectors and Matrices

• Scalars:

• Just single numbers!

• Set of all real numbers,

• Set of all complex numbers,

•  

• If            , then                    with  

• Complex conjugate:

• Magnitude:

•

18
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p
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p
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• Vectors:

• Ordered sets of numbers:

• Set of all real vectors with dimension N, 

• Addition:

• Multiplication by scalar:

• Transpose:

19

Scalars, Vectors and Matrices

(x1, x2, . . . xN )

RN

0

BBB@

x1

x2
...

xN

1

CCCA
+

0

BBB@

y1

y2
...
yN

1

CCCA
=

0

BBB@

x1 + y1

x2 + y2
...

xN + yN

1

CCCA

c(x1 x2 . . . xN ) = (cx1 cx2 . . . cxN )

x =

0

BBB@

x1

x2
...

xN

1

CCCA x

T = (x1 x2 . . . xN )



Scalars, Vectors and Matrices
• Vectors:

• Scalar product:

• Norm:

• Properties:

• Non-negative:  

• If                  , then 

•  

•                                  with  

•  
20

x · y =
NX

i=1

xiyi

kxkp =

 
NX

i=1

|xi|p
!1/p

kxkp = 0 x = 0

kcxkp = |c|kxkp
|x · y|  kxkpkykq p, q > 0, 1/p+ 1/q = 1

kx+ ykp  kxkp + kykp

kxkp � 0



Scalars, Vectors and Matrices

• Vectors:

• ∞-norm:

• Examples of norms: 

•  

•  

•  

•  

• Families of vectors with the same 
norm: 1-norm, 2-norm, ∞-norm

21

x = (
p
2/2,

p
2/2)

kxk1 =
p
2

kxk2 = 1

kxk1 =
p
2/2

kxk1 = max

i
|xi|

x1

x2

kxk1  kxk2  kxk1

kxkp =

 
NX

i=1

|xi|p
!1/p



Scalars, Vectors and Matrices

• Vectors:

• ∞-norm:

• Examples of norms: 

•  

•  

•  

•  

• Families of vectors with the same 
norm: 1-norm, 2-norm, ∞-norm

x = (
p
2/2,

p
2/2)

kxk1 =
p
2

kxk2 = 1

kxk1 =
p
2/2

kxk1 = max

i
|xi|

kxk1  kxk2  kxk1

kxkp =

 
NX

i=1

|xi|p
!1/p



Scalars, Vectors and Matrices

• Vectors:

• Comparing vectors with norm metrics:

•  

• If                         , then 

•  

• Calculating norms in MATLAB: 

• norm( x, p ), norm( x, Inf )

• How many operations to compute the norm?

• How can I measure relative and absolute error for 
vectors?

23

x

y

x� y

kx� yk2 � 0

kx� yk2 = 0
x = y

kx� yk2  kx� vk2 + ky � vk2



Scalars, Vectors and Matrices

• Vectors:

• Comparing vectors with norm metrics:

•  

• If                         , then 

•  

• Calculating norms in MATLAB: 

• norm( x, p ), norm( x, Inf )

• How many operations to compute the norm?

• The relative and absolute error in a vector:

24

x

y

x� y

kx� yk2 � 0

kx� yk2 = 0
x = y

kx� yk2  kx� vk2 + ky � vk2
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Scalars, Vectors and Matrices

• Vectors:

• What mathematical object is the equivalent of an 
infinite dimensional vector?
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Scalars, Vectors and Matrices

• Vectors:

What mathematical object is the equivalent of an
infinite dimensional vector?

•



• Matrices:

• Ordered sets of numbers:

27

Scalars, Vectors and Matrices

A =

0

BBB@ . . . .
AN1 AN2 . . . ANM

A

• Set of all real matrices with N rows and M columns, RN⇥M

• Addition: C = A+B ) Cij = Aij +Bij

• Multiplication by scalar: C = cA ) Cij = cAij

• Transpose: C = AT ) Cij = Aji

• Trace (square matrices): N

TrA =
X

Aii

i=1

A11 A12 . . . A1M

A21 A22 . . . A2M
.. .. . . ..

1

CCC



• Matrices:
M

• Matrix-vector product:
y = Ax ) yi =

X
Aijxj

j=1
M

• Matrix-matrix product: C = AB ) Cij =

perti k

X
AikBkj

• Pro es: =1

• no commutation in general:AB = BA

• association: A(BC) = (AB)C

• distribution:A(B+C) = AB+AC

• transposition: (AB)T = BTAT

• inversion:  A   �   1  A    =     AA       �  1   =    I    if det(A) = 0

28

Scalars, Vectors and Matrices

6

6



• Matrices:

• Matrix-matrix product:

• Vectors are matrices too:

• x RN N⇥1
 2 x 2 R

• y T 2 RN yT 2 R1⇥N

• What is:   y  T   x   ?

M

C = AB ) Cij =
X

AikBkj

k=1

29

Scalars, Vectors and Matrices



• Matrices:

• Matrix-matrix product:

• Vectors are matrices too:

•  

•  

• What is:          ?

30

Scalars, Vectors and Matrices

x 2 RN
x 2 RN⇥1

yT 2 RN yT 2 R1⇥N

y

T
x



• Matrices:

• Dyadic product:
A = xy

T = x⌦ y ) Aij = xiyj

• Determinant (square matrices only): 
N

det(A) = (�1)i+jAijMij(A)

31

Scalars, Vectors and Matrices

X

j=1

20 10.34: numerical methods, lecture notes

for any i = 1, 2, . . . N. The quantity Mij(A) is called a minor of A and
is the determinant of an (N � 1) ⇥ (N � 1) matrix that is identical to A

but with the ith row and the jth column removed:

Mij
0

A11 A . . . A
B

12 1(j�1) A1(j+1) . . . A1N

B

B

A21 A22 . . . A2(j�1) A2(j+1) . . . A2N
. . .. . . .

1

. . .. . .. . . .. . . .

C

det
B

B

B

B

B

B

A(i�1)1 A(j 1)2 . . . A A� (i�1)(j�1) (i�1)(j+1) . . . A(i N

C

�1)

B

B

A(i+1)1 A(j+1)2 . . . A(

C

C

i+1)(j A�1) (i+1)(j+1) . . . A(i+1)N

C

B

. . . . .. . . . .

C

@

. . .. . . . . .. .

C

C

C

AN1 AN2 . . . AN(j�1) AN(j+1) . . . ANN

C

C

C

A

• det(c) = c

(A) =

.

This minor is then calculated using the same recursive formula (equa-
tion 2.28). The recursion is closed by the identity det(c) = c, where
c 2 C is a scalar.

Consider the 2 ⇥ 2 matrix:

A =

 

A11 A12
A21 A22

!

.

The determinant is det(A) = A11M11 � A12M12, where with the ele-
ments in red excluded:

M11 = det

 

A11 A12
A21 A22

!

= det(A22) = A22,

and

M12 = det

 

A11 A12
A21 A22

!

= det(A21) = A21.

Therefore, det(A) = A11 A22 � A12 A21.
The determinant has a simple geometric interpretation that can be

drawn from the previous example. As shown in figure 2.5, the rows
of the 2 ⇥ 2 matrix A, correspond to vectors along the vertices of a
rhombus. The area within the rhombus is equal to the absolute value of
the determinant. A matrix whose rows are parallel vectors will create
a rhombus with no area. The determinant is zero and that matrix is
singular. A similar picture can be imagined for high dimensions. The
edges of an N-dimensional parallelepiped are given by all possible
sums of the rows of a square matrix A 2 CN⇥N . The N-dimensional
volume within this parallelepiped corresponds to the absolute value
of the determinant. If the rows are such that the parallelepiped is less
than N-dimensional, it contains no volume and the determinant is zero.
Such a matrix is singular.

Some properties of the determinant include:
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