10.34: Numerical Methods Applied to Chemical Engineering

Lecture I:
Organization,
Numerical Error,
Basics of Linear Algebra

Organization

- Purposes of the course:
- Ensure that you are aware of the wide range of easily accessible numerical methods that will be useful in your thesis research, at practice school, and in your career.
- Make you confident in your ability to look up and apply additional methods when you need them.
- Help you become familiar with MATLAB, other convenient numerical software, and with simple programming/debugging techniques.
- Give you an understanding of how common numerical algorithms work and why they sometimes produce unexpected results.

Organization

- Resources:
- Course website - details on grading, homework policy, and homework submission guidelines.
- Textbook - Beers,"Numerical Methods for Chemical Engineering". Notes will be placed on Course website. Additional text references are given in the syllabus.
- MATLAB tutorials
- Peers - you are encouraged to discuss the course material, programming, and the homework with your colleagues. Be aware of the homework policy outlined in the syllabus, however.
- TAs and instructors - we are here to help you, and available for meetings, usually within 24 hours.

Organization

- When to stop:
- The homework for the course should require 9 hours per week on average - perhaps a little more early on if you are not proficient with MATLAB.
- Sometimes you may find a homework problem is consuming an inordinate amount of time even after you have asked for help.
- If this happens, just turn in what you have completed with a note indicating that you know your solution is incomplete, details about what you think went wrong, and what you think a correct solution would look like.

Organization

- Linear algebra
- Solutions of nonlinear equations
- Optimization
- Initial value problems
- Differential-algebraic equations
- Boundary value problems
- Partial differential equations
- Probability theory
- Monte Carlo methods
- Stochastic chemical kinetics

Numerical Methods

- Motivation:
- Most real engineering problems do not have an exact solution. Even if there is an exact solution. Can it be evaluated exactly?
- Application of computational problem solving methodologies can lead to transformative (as opposed to incremental) engineering solutions.
- Algorithms to solve problems numerically should be:
- clear
- concise
- able to solve the problem robustly
- use realistic amount of resources
- execute in a realistic amount of time

Numerical Error

- Virtually all computer problem solving is done approximately. It is essential to quantify the error in these calculations.
- Example: representation of numbers

$$
\begin{aligned}
& \pi=3.141592653589 \ldots \\
& \frac{1100100100001111110110101}{\text { significand (24 bits) } \quad \text { exponent (8 bits) }} \\
& \left.1+\sum_{n=1}^{p-1} \text { bit }_{n} \times 2^{-n}\right) \times 2^{e}
\end{aligned}
$$

- Example: calculating the square root \sqrt{s}

$$
x^{2}-s=0
$$

Babylonian method (iterative solution):

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{s}{x_{n}}\right)
$$

Numerical Error

- Overflow/underflow - exceeding the largest/smallest representable number
- Example: $1.3 \times 10^{45}(\mathrm{~nm})^{3}=1.3 \times 10^{9}(\mathrm{~km})^{3}$
- Solution: rescaling
- Truncation:
- Computers have a finite amount of memory/time to work with. Most algorithms work within these constraints to return answers which are accurate to within some tolerance.
- Solution: the design of algorithms that quickly minimize truncation error
- Example: Leibniz vs. Newton

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\frac{\pi}{4} \quad \frac{1}{2} \sum_{n=0}^{\infty} \frac{2^{n} n!^{2}}{(2 n+1)!}=\frac{\pi}{4}
$$

Numerical Error

- Truncation (cont.):
- Example: Leibniz vs. Newton

$$
\sum_{n=0}^{N} \frac{(-1)^{n}}{2 n+1}=\frac{\pi}{4} \quad \frac{1}{2} \sum_{n=0}^{N} \frac{2^{n} n!^{2}}{(2 n+1)!}=\frac{\pi}{4}
$$

N	Leibniz	Newton
I	0.66667	0.66667
2	0.86667	0.73333
3	0.7238 I	0.76190
5	0.7440 I	0.78038
10	0.80808	0.78528

0.78540...

- Absolute error:

$$
\epsilon_{\text {abs. }}=\left|x_{\text {exact }}-x_{\text {approx. }}\right|
$$

- Relative error:

$$
\epsilon_{\text {rel. }}=\frac{\left|x_{\mathrm{exact}}-x_{\mathrm{approx} .}\right|}{\left|x_{\mathrm{exact}}\right|}
$$

Numerical Error

- Truncation (cont.):
- Example: $2 \times 10^{-4}+1 \times 10^{-13}=$? with 8 digit accuracy
- Estimate the absolute error in this calculation.
- Estimate the relative error in this calculation.
- Quantifying and minimizing numerical error is a key aspect developing numerical algorithms.
- Even simple calculations introduce numerical errors.
- Those errors can compound and magnify. We will see how shortly.

Linear Algebra

- Primarily concerned with the solutions of systems of linear equations
- Is there a solution?
- If there is a solution, is it a unique?
- Is it possible to find the solution or family of solutions?
- Chemical engineering example: mass balances

$$
\begin{gathered}
\dot{m}_{1}+\dot{m}_{2}=3 \\
\dot{m}_{2}=2 \dot{m}_{1}
\end{gathered}
$$

$$
\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right)\binom{\dot{m}_{1}}{\dot{m}_{2}}=\binom{3}{0}
$$

Linear Algebra

- Row-view:
- Each row in the system of equations describes a line.
- The solution represents the intersection of these lines.
- For dimensions higher than 2, the solution is an intersection of other linear manifolds
- How many solutions does the equation: $\mathrm{ax}=\mathrm{b}$, have?

$$
\begin{gathered}
\dot{m}_{1}+\dot{m}_{2}=3 \\
-2 \dot{m}_{1}+\dot{m}_{2}=0
\end{gathered}
$$

Linear Algebra

- Column view:
- Each column in the system of equations describes a vector.
- The solution represents the correct weighting of these vectors.
- While conceptually more difficult, the column view is easier to extend to arbitrarily high dimensions. You will see why later.

Linear Algebra

Row-view:

$$
\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
\dot{m}_{0} \\
\dot{m}_{1} \\
\dot{m}_{2}
\end{array}\right)=\binom{0}{0}
$$

Column-view:

$$
\binom{1}{1}\left(\dot{m}_{2}\right)=\binom{3-(1+\delta)}{2(1+\delta)}
$$

Linear Algebra

Row-view:

$$
\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
\dot{m}_{0} \\
\dot{m}_{1} \\
\dot{m}_{2}
\end{array}\right)=\binom{0}{0}
$$

Column-view:

$$
\binom{1}{1}\left(\dot{m}_{2}\right)=\binom{3-(1+\delta)}{2(1+\delta)}
$$

Solving Systems of Equations

$$
a x=b \Rightarrow x=a^{-1} b
$$

$$
\mathbf{A} \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

In MATLAB:

$$
x=A \backslash b
$$

Scalars, Vectors and Matrices

- Scalars:
- Just single numbers!
- Set of all real numbers, \mathbb{R}
- Set of all complex numbers, \mathbb{C}
- $i=\sqrt{-1}$
- If $z \in \mathbb{C}$, then $z=a+i b$ with $a, b \in \mathbb{R}$
- Complex conjugate: $\bar{z}=a-i b$
- Magnitude: $|z|=\sqrt{z \bar{z}}$
- $\mathbb{R} \subset \mathbb{C}$

Scalars, Vectors and Matrices

- Vectors:
- Ordered sets of numbers: $\left(x_{1}, x_{2}, \ldots x_{N}\right)$
- Set of all real vectors with dimension $\mathrm{N}, \mathbb{R}^{N}$
- Addition:

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)+\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{N}+y_{N}
\end{array}\right)
$$

- Multiplication by scalar:

$$
c\left(x_{1} x_{2} \ldots x_{N}\right)=\left(\begin{array}{llll}
c x_{1} & c x_{2} & \ldots & c x_{N}
\end{array}\right)
$$

- Transpose: $\quad\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{N}\end{array}\right)$

$$
\mathbf{x}^{T}=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{N}
\end{array}\right)
$$

Scalars, Vectors and Matrices

- Vectors:
- Scalar product: $\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{N} x_{i} y_{i}$
- Norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{1 / p}$
- Properties:
- Non-negative: $\|\mathbf{x}\|_{p} \geq 0$
- If $\|\mathbf{x}\|_{p}=0$, then $\mathbf{x}=0$
- $\|c \mathbf{x}\|_{p}=|c|\|\mathbf{x}\|_{p}$
- $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}$ with $p, q>0,1 / p+1 / q=1$
- $\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}$

Scalars, Vectors and Matrices

- Vectors:
- $\quad \infty$-norm: $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$
- Examples of norms:

$$
\mathbf{x}=(\sqrt{2} / 2, \sqrt{2} / 2)
$$

- $\|\mathbf{x}\|_{1}=$
- $\|\mathbf{x}\|_{2}=$
- $\|\mathbf{x}\|_{\infty}=$
- $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1}$
- Families of vectors with the same norm: I-norm, 2-norm, ∞-norm

Scalars, Vectors and Matrices

- Vectors:
- $\quad \infty$-norm: $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$
- Examples of norms:

$$
\mathbf{x}=(\sqrt{2} / 2, \sqrt{2} / 2)
$$

- $\|\mathbf{x}\|_{1}=$
- $\|\mathbf{x}\|_{2}=$
- $\|\mathbf{x}\|_{\infty}=$
- $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1}$
- Families of vectors with the same norm: I-norm, 2-norm, ∞-norm

Scalars,Vectors and Matrices

- Vectors:
- Comparing vectors with norm metrics:
- $\|\mathbf{x}-\mathbf{y}\|_{2} \geq 0$
- If $\|\mathbf{x}-\mathbf{y}\|_{2}=0$, then $\mathbf{x}=\mathbf{y}$
- $\|\mathbf{x}-\mathbf{y}\|_{2} \leq\|\mathbf{x}-\mathbf{v}\|_{2}+\|\mathbf{y}-\mathbf{v}\|_{2}$
- Calculating norms in MATLAB:

- norm(x, p), norm (x, Inf)
- How many operations to compute the norm?
- How can I measure relative and absolute error for vectors?

Scalars,Vectors and Matrices

- Vectors:
- Comparing vectors with norm metrics:
- $\|\mathbf{x}-\mathbf{y}\|_{2} \geq 0$
- If $\|\mathbf{x}-\mathbf{y}\|_{2}=0$, then $\mathbf{x}=\mathbf{y}$
- $\|\mathbf{x}-\mathbf{y}\|_{2} \leq\|\mathbf{x}-\mathbf{v}\|_{2}+\|\mathbf{y}-\mathbf{v}\|_{2}$
- Calculating norms in MATLAB:

- $\operatorname{norm}(x, p), \operatorname{norm}(x, \operatorname{Inf})$
- How many operations to compute the norm?
- The relative and absolute error in a vector:

Scalars,Vectors and Matrices

- Vectors:
- What mathematical object is the equivalent of an infinite dimensional vector?

Scalars,Vectors and Matrices

- Vectors:
- What mathematical object is the equivalent of an infinite dimensional vector?

Scalars, Vectors and Matrices

- Matrices:
- Ordered sets of numbers: $\mathbf{A}=\left(\begin{array}{cccc}A_{11} & A_{12} & \ldots & A_{1 M} \\ A_{21} & A_{22} & \ldots & A_{2 M} \\ \vdots & \vdots & \ddots & \vdots \\ A_{N 1} & A_{N 2} & \ldots & A_{N M}\end{array}\right)$
- Set of all real matrices with N rows and M columns, $\mathbb{R}^{N \times M}$
- Addition: $\mathbf{C}=\mathbf{A}+\mathbf{B} \Rightarrow C_{i j}=A_{i j}+B_{i j}$
- Multiplication by scalar: $\mathbf{C}=c \mathbf{A} \Rightarrow C_{i j}=c A_{i j}$
- Transpose: $\mathbf{C}=\mathbf{A}^{T} \Rightarrow C_{i j}=A_{j i}$
- Trace (square matrices):

$$
\operatorname{Tr} \mathbf{A}=\sum_{i=1}^{N} A_{i i}
$$

Scalars, Vectors and Matrices

- Matrices:
- Matrix-vector product: $\mathbf{y}=\mathbf{A x} \Rightarrow y_{i}=\sum_{j=1}^{M} A_{i j} x_{j}$
- Properties:
- no commutation in general: $\mathbf{A B} \neq \mathbf{B A}$
- association: $\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}$
- distribution: $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
- transposition: $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$
- inversion: $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$ if $\operatorname{det}(\mathbf{A}) \neq 0$

Scalars, Vectors and Matrices

- Matrices:
- Matrix-matrix product:
- Vectors are matrices too:
- $\mathbf{x} \in \mathbb{R}^{N} \quad \mathbf{x} \in \mathbb{R}^{N \times 1}$
- $\mathbf{y}^{T} \in \mathbb{R}^{N} \quad \mathbf{y}^{T} \in \mathbb{R}^{1 \times N}$
- What is: $\mathbf{y}^{T} \mathbf{x}$?

$$
\mathbf{C}=\mathbf{A B} \Rightarrow C_{i j}=\sum_{k=1}^{M} A_{i k} B_{k j}
$$

Scalars, Vectors and Matrices

- Matrices:
- Matrix-matrix product:
- Vectors are matrices too:
- $\mathbf{x} \in \mathbb{R}^{N} \quad \mathbf{x} \in \mathbb{R}^{N \times 1}$
- $\mathbf{y}^{T} \in \mathbb{R}^{N} \mathbf{y}^{T} \in \mathbb{R}^{1 \times N}$
- What is: $\mathbf{y}^{T} \mathbf{x}$?

Scalars, Vectors and Matrices

- Matrices:
- Dyadic product: $\mathbf{A}=\mathbf{x y}^{T}=\mathbf{x} \otimes \mathbf{y} \Rightarrow A_{i j}=x_{i} y_{j}$
- Determinant (square matrices only):

$$
\operatorname{det}(\mathbf{A})=\sum_{j=1}^{N}(-1)^{i+j} A_{i j} M_{i j}(\mathbf{A})
$$

$M_{i j}(\boldsymbol{A})=$
$\operatorname{det}\left(\begin{array}{ccccccc}A_{11} & A_{12} & \ldots & A_{1(j-1)} & A_{1(j+1)} & \ldots & A_{1 N} \\ A_{21} & A_{22} & \ldots & A_{2(j-1)} & A_{2(j+1)} & \cdots & A_{2 N} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ A_{(i-1) 1} & A_{(j-1) 2} & \ldots & A_{(i-1)(j-1)} & A_{(i-1)(j+1)} & \ldots & A_{(i-1) N} \\ A_{(i+1) 1} & A_{(j+1) 2} & \ldots & A_{(i+1)(j-1)} & A_{(i+1)(j+1)} & \cdots & A_{(i+1) N} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ A_{N 1} & A_{N 2} & \cdots & A_{N(j-1)} & A_{N(j+1)} & \cdots & A_{N N}\end{array}\right)$

- $\operatorname{det}(c)=c$

MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

