10.34: Numerical Methods Applied to Chemical Engineering

Lecture 2:
More basics of linear algebra Matrix norms,
Condition number

Recap

- Numerical error
- Scalars, vectors, and matrices
- Operations
- Properties

Recap

- Vectors:
- What mathematical object is the equivalent of an infinite dimensional vector?

Scalars, Vectors and Matrices

- Vectors:
- What mathematical object is the equivalent of an infinite dimensional vector?
- A function.

Scalars, Vectors and Matrices

- Matrices:
- Ordered sets of numbers: $\mathbf{A}=\left(\begin{array}{cccc}A_{11} & A_{12} & \ldots & A_{1 M} \\ A_{21} & A_{22} & \ldots & A_{2 M} \\ \vdots & \vdots & \ddots & \vdots \\ A_{N 1} & A_{N 2} & \ldots & A_{N M}\end{array}\right)$
- Set of all real matrices with N rows and M columns, $\mathbb{R}^{N \times M}$
- Addition: $\mathbf{C}=\mathbf{A}+\mathbf{B} \Rightarrow C_{i j}=A_{i j}+B_{i j}$
- Multiplication by scalar: $\mathbf{C}=c \mathbf{A} \Rightarrow C_{i j}=c A_{i j}$
- Transpose: $\mathbf{C}=\mathbf{A}^{T} \Rightarrow C_{i j}=A_{j i}$
- Trace (square matrices):

$$
\operatorname{Tr} \mathbf{A}=\sum_{i=1}^{N} A_{i i}
$$

Scalars, Vectors and Matrices

- Matrices:
- Matrix-vector product: $\mathbf{y}=\mathbf{A x} \Rightarrow y_{i}=\sum_{j=1}^{M} A_{i j} x_{j}$
- Properties:
- no commutation in general: $\mathbf{A B} \neq \mathbf{B A}$
- association: $\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}$
- distribution: $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
- transposition: $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$
- inversion: $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$ if $\operatorname{det}(\mathbf{A}) \neq 0$

Scalars, Vectors and Matrices

- Matrices:
- Matrix-matrix product:
- Vectors are matrices too:
- $\mathbf{x} \in \mathbb{R}^{N} \quad \mathbf{x} \in \mathbb{R}^{N \times 1}$
- $\mathbf{y}^{T} \in \mathbb{R}^{N} \quad \mathbf{y}^{T} \in \mathbb{R}^{1 \times N}$
- What is: $\mathbf{y}^{T} \mathbf{x}$?

$$
\mathbf{C}=\mathbf{A B} \Rightarrow C_{i j}=\sum_{k=1}^{M} A_{i k} B_{k j}
$$

Scalars, Vectors and Matrices

- Matrices:
- Matrix-matrix product:
- Vectors are matrices too:
- $\mathbf{x} \in \mathbb{R}^{N} \quad \mathbf{x} \in \mathbb{R}^{N \times 1}$
- $\mathbf{y}^{T} \in \mathbb{R}^{N} \mathbf{y}^{T} \in \mathbb{R}^{1 \times N}$
- What is: $\mathbf{y}^{T} \mathbf{x}$?

Scalars,Vectors and Matrices

- Matrices:
- Examples: $\quad \mathbf{A}, \mathbf{B} \in \mathbb{R}^{N \times N} \quad \mathbf{x} \in \mathbb{R}^{N}$
- How many operations to compute:
- $\mathbf{A x}$
- AB
- $\mathbf{A B x}$
- What is $\mathbf{x}^{T} \mathbf{A B x}$?
- What is $\mathbf{A B x x}{ }^{T}$?

Scalars, Vectors and Matrices

- Matrices:
- Dyadic product: $\mathbf{A}=\mathbf{x y}^{T}=\mathbf{x} \otimes \mathbf{y} \Rightarrow A_{i j}=x_{i} y_{j}$
- Determinant (square matrices only):

$$
\operatorname{det}(\mathbf{A})=\sum_{j=1}^{N}(-1)^{i+j} A_{i j} M_{i j}(\mathbf{A})
$$

$M_{i j}(A)=$
$\operatorname{det}\left(\begin{array}{ccccccc}A_{11} & A_{12} & \ldots & A_{1(j-1)} & A_{1(j+1)} & \ldots & A_{1 N} \\ A_{21} & A_{22} & \ldots & A_{2(j-1)} & A_{2(j+1)} & \ldots & A_{2 N} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ A_{(i-1) 1} & A_{(j-1) 2} & \ldots & A_{(i-1)(j-1)} & A_{(i-1)(j+1)} & \ldots & A_{(i-1) N} \\ A_{(i+1) 1} & A_{(j+1) 2} & \ldots & A_{(i+1)(j-1)} & A_{(i+1)(j+1)} & \ldots & A_{(i+1) N} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ A_{N 1} & A_{N 2} & \ldots & A_{N(j-1)} & A_{N(j+1)} & \ldots & A_{N N}\end{array}\right)$

- $\operatorname{det}(c)=c$

Scalars,Vectors and Matrices

- Matrices:
- Determinant (square matrices only):

$$
\underset{\text { rties: }}{\operatorname{det}}(\mathbf{A})=\sum_{j=1}^{N}(-1)^{i+j} A_{i j} M_{i j}(\mathbf{A})
$$

- If any row or column is zeros, $\operatorname{det}(\mathbf{A})=0$
- If any row or column is multiplied by a

$$
\operatorname{det}\left(\mathbf{A}_{1}^{c} \mathbf{A}_{2}^{c} a \mathbf{A}_{3}^{c} \ldots \mathbf{A}_{N}^{c}\right)=a \operatorname{det}(\mathbf{A})
$$

- Swapping any row or column changes the sign
- $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$
- $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$

Scalars, Vectors and Matrices

- Matrices:
- Example:

$$
\mathbf{A}=\left(\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right)
$$

- Calculate: $\operatorname{det}(\mathbf{A})$
- How many operations to compute $\operatorname{det}(\mathbf{A})$ in general?

$$
\operatorname{det}(\mathbf{A})=\sum_{j=1}^{N}(-1)^{i+j} A_{i j} M_{i j}(\mathbf{A})
$$

$$
\mathbf{A}=\left(\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right)
$$

$\operatorname{det}(\mathbf{A})$ recursively takes $O(N!)$ but MATLAB does it in $O\left(N^{3}\right)$

Scalars, Vectors and Matrices

- Matrices:
- What are matrices?
- They represent transformations!
- Examples: $\overline{\mathbf{y}}=\mathbf{A} \overline{\mathbf{x}}$

$$
\mathbf{y}=\binom{x_{1} / 2}{x_{2} / 2}
$$

$$
\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)
$$

Scalars,Vectors and Matrices

- Matrices:
- What are matrices?
- They represent transformations!
- Examples: $\overline{\mathbf{y}}=\mathbf{A} \overline{\mathbf{x}}$

$$
\mathbf{y}=\binom{x_{2}}{x_{1}}
$$

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Scalars,Vectors and Matrices

- Matrices:
- What are matrices?
- They represent transformations!
- Examples: $\overline{\mathbf{y}}=\mathbf{A} \overline{\mathbf{x}}$

Scalars,Vectors and Matrices

- Matrices:
- What are matrices?
- They represent transformations!
- Examples: $\overline{\mathbf{y}}=\mathbf{A} \overline{\mathbf{x}}$

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Scalars,Vectors and Matrices

- Matrices:
- What are matrices?
- They represent transformations!
- If a transformation is unique, then it can be undone.
- The matrix is invertible: $\operatorname{det}(\mathbf{A}) \neq 0$
- A unique solution to the system of equations exists: $\mathbf{x}=\mathbf{A}^{-1} \mathbf{y}$
- What happens if a transformation is just barely unique?

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 1+\epsilon \\
1 & 1
\end{array}\right)
$$

Scalars, Vectors and Matrices

- Matrices:
- Matrices are maps between vector spaces!

Scalars,Vectors and Matrices

- Matrices:
- Matrices are maps between vector spaces!

- When a square matrix is invertible, there is a unique map back the other direction

Scalars,Vectors and Matrices

- Matrices:
- Matrices are maps between vector spaces!

- When a square matrix is not invertible, the map is not unique or does not cover the entire vector space.

Scalars,Vectors and Matrices

- Matrices:
- Matrices are maps between vector spaces!

- When a square matrix is not invertible, the map is not unique or does not cover the entire vector space.

Scalars,Vectors and Matrices

- Matrices:
- Matrix norms: $\mathbf{A} \in \mathbb{R}^{N \times M} \quad \mathbf{x} \in \mathbb{R}^{M}$
- Induced norms:

$$
\|\mathbf{A}\|_{p}=\max _{\mathbf{x}} \frac{\|\mathbf{A} \mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}}
$$

- Among all vectors in \mathbb{R}^{M}, what is the maximum "stretch" caused by the matrix A ?
- Example: let $\mathbf{y}=\mathbf{A x}$ then $\|\mathbf{A}\|_{2}=\max _{\mathbf{x}} \frac{\|\mathbf{y}\|_{2}}{\|\mathbf{x}\|_{2}}$
- What is $\|\mathbf{A}\|_{\infty}$? $\|\mathbf{A}\|_{\infty}=\max _{i} \sum_{j=1}^{M}\left|A_{i j}\right|$
- What is $\|\mathbf{A}\|_{1} ? \quad\|\mathbf{A}\|_{1}=\max _{j} \sum_{i=1}^{N}\left|A_{i j}\right|$

Scalars,Vectors and Matrices

- Matrices:
- Matrix norms: $\mathbf{A} \in \mathbb{R}^{N \times M} \quad \mathbf{x} \in \mathbb{R}^{M} \quad \mathbf{B} \in \mathbb{R}^{M \times O}$
- What is $\|\mathbf{A}\|_{2} ?\|\mathbf{A}\|_{2}=\sqrt{\max _{j} \lambda_{j}\left(\mathbf{A}^{T} \mathbf{A}\right)}$
- $\lambda_{j}\left(\mathbf{A}^{T} \mathbf{A}\right)$ is an eigenvalue of $\mathbf{A}^{T} \mathbf{A}$
- Properties:
$\bullet\|\mathbf{A}\|_{p} \geq 0, \quad\|\mathbf{A}\|_{p}=0$ only if $\mathbf{A}=0$
- $\|c \mathbf{A}\|_{p}=|c|\|\mathbf{A}\|_{p}$
- $\|\mathbf{A} \mathbf{x}\|_{p} \leq\|\mathbf{A}\|_{p}\|\mathbf{x}\|_{p}$
- $\|\mathbf{A B}\|_{p} \leq\|\mathbf{A}\|_{p}\|\mathbf{B}\|_{p}$
- $\|\mathbf{A}+\mathbf{B}\|_{p} \leq\|\mathbf{A}\|_{p}+\|\mathbf{B}\|_{p}$

Scalars,Vectors and Matrices

- Matrices:
- Using matrix norms to estimate numerical error in solution of linear equations:
- Suppose: $\mathbf{A x}=\mathbf{b}$, has exact solution: $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$
- If there is a small error in \mathbf{b}, denoted $\delta \mathbf{b}$, how much of an error is produced in \mathbf{x} ?

$$
\begin{aligned}
& \mathbf{x}+\delta \mathbf{x}=\mathbf{A}^{-1}(\mathbf{b}+\delta \mathbf{b}) \\
& \delta \mathbf{x}=\mathbf{A}^{-1} \delta \mathbf{b}
\end{aligned}
$$

- Absolute error in \mathbf{x} :

$$
\|\delta \mathbf{x}\|_{p}=\left\|\mathbf{A}^{-1} \delta \mathbf{b}\right\|_{p} \leq\left\|\mathbf{A}^{-1}\right\|_{p}\|\delta \mathbf{b}\|_{p}
$$

- Relative error in \mathbf{x} :

$$
\begin{aligned}
& \|\mathbf{b}\|_{p}=\|\mathbf{A} \mathbf{x}\|_{p} \leq\|\mathbf{A}\|_{p}\|\mathbf{x}\|_{p} \Rightarrow\|\mathbf{x}\|_{p} \geq \frac{\|\mathbf{b}\|_{p}}{\|\mathbf{A}\|_{p}} \\
& \frac{\|\delta \mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}} \leq\|\mathbf{A}\|_{p}\left\|\mathbf{A}^{-1}\right\|_{p} \frac{\|\delta \mathbf{b}\|_{p}}{\|\mathbf{b}\|_{p}}
\end{aligned}
$$

Scalars,Vectors and Matrices

- Matrices:
- Condition number: $\kappa(\mathbf{A})=\|\mathbf{A}\|_{p}\left\|\mathbf{A}^{-1}\right\|_{p}$
- Measures how numerical error is magnified in solution of linear equations.
- Assume a unique solution exists, can we find it?
- (R.E. in answer) is bounded by (condition number) \times (R.E. in data)
- $\log _{10} \kappa(\mathbf{A})$ gives the number of lost digits
- "Ill-conditioned" means a large condition number
- Examples:
- $\kappa(\mathbf{I})=1$
- $\kappa\left(\begin{array}{cc}1 & 1+10^{-10} \\ 1 & 1\end{array}\right) \approx 10^{10}$

Scalars, Vectors and Matrices

- Matrices:
- Condition number: $\kappa(\mathbf{A})=\|\mathbf{A}\|_{p}\left\|\mathbf{A}^{-1}\right\|_{p}$
- Examples:
- Polynomial interpolation:

$$
\begin{gathered}
y_{i}=\sum_{j=1}^{N} a_{j} x_{i}^{j-1} \\
\mathbf{y}=\mathbf{V a}
\end{gathered}
$$

- Vandermonde matrix:

$$
\mathbf{V}=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{N} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{N} & x_{N}^{2} & \ldots & x_{N}^{N}
\end{array}\right)
$$

$$
\kappa(\mathbf{V})>N 2^{N}, \quad N \gg 1
$$

Scalars, Vectors and Matrices

- Matrices:
- Condition number:
- $\mathbf{A x}=\mathbf{b}$ is ill-conditioned. What now?
- Rescale the equations:

$$
\left(\mathbf{D}_{1} \mathbf{A}\right) \mathbf{x}=\mathbf{D}_{1} \mathbf{b}
$$

- Rescale the unknowns:

$$
\left(\mathbf{A D}_{2}\right)\left(\mathbf{D}_{2}^{-1} \mathbf{x}\right)=\mathbf{b}
$$

- Rescale both:

$$
\left(\mathbf{D}_{1} \mathbf{A} \mathbf{D}_{2}\right)\left(\mathbf{D}_{2}^{-1} \mathbf{x}\right)=\mathbf{D}_{1} \mathbf{b}
$$

- \mathbf{D}_{1} and \mathbf{D}_{2} are diagonal matrices
- An optimal rescaling exists: Braatz and Morari, SIAM J. Control and Optimization 32, I 994

Scalars, Vectors and Matrices

- Matrices:
- Condition number:
- Rescaling example:

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{cc}
10^{10} & 1 \\
1 & 10^{-9}
\end{array}\right) \\
& \kappa(\mathbf{A}) \approx \\
& \mathbf{D}=\left(\begin{array}{cc}
10^{-10} & 0 \\
0 & 1
\end{array}\right), \quad \kappa(\mathbf{D A}) \approx
\end{aligned}
$$

- The simplest solution is to rescale rows or columns by their maximum element

Scalars,Vectors and Matrices

- Matrices:
- Preconditioning:
- Change the problem so it is easier to solve!
- Instead of solving: $\mathbf{A x}=\mathbf{b}$
- Solve: $\left(\mathbf{P}_{1} \mathbf{A} \mathbf{P}_{2}\right)\left(\mathbf{P}_{2}^{-1} \mathbf{x}\right)=\mathbf{P}_{1} \mathbf{b}$
- \mathbf{P}_{1} - left, \mathbf{P}_{2} - right, preconditioner
- Perhaps the matrix $\mathbf{P}_{1} \mathbf{A} \mathbf{P}_{2}$ has better properties:
- condition number
- structure
- sparsity pattern

MIT OpenCourseWare
httpV://ocw.mit.edu
10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: httpV://ocw.mit.edu/terms.

