10.34: Numerical Methods Applied to Chemical Engineering

Lecture 3:
Existence and uniqueness of solutions
Four fundamental subspaces

Recap

- Scalars, vectors, and matrices
- Transformations/maps
- Determinant
- Induced norms
- Condition number

Recap

- Matrices:
- Matrices are maps between vector spaces!

Recap

- Matrices:
- Matrices are maps between vector spaces!

Recap

- Matrices:
- Matrices are maps between vector spaces!

Recap

- Matrices:
- Matrices are maps between vector spaces!

Existence and Uniqueness

- Example:

Stream 1 carries $1800 \mathrm{~kg} / \mathrm{hr}$ P, $1200 \mathrm{~kg} / \mathrm{hr} \mathrm{D}$ and $0 \mathrm{~kg} / \mathrm{hr}$ W
Stream 2 carries $0 \mathrm{~kg} / \mathrm{hr} \mathrm{P}, 0 \mathrm{~kg} / \mathrm{hr} \mathrm{D}$ and $10000 \mathrm{~kg} / \mathrm{hr} \mathrm{W}$
Stream 3 carries $0 \mathrm{~kg} / \mathrm{hr} \mathrm{D}$ and $50 \% \mathrm{~W}$ into the washer
Stream 4 carries $0 \mathrm{~kg} / \mathrm{hr} \mathrm{P}$
Stream 5 carries $0 \mathrm{~kg} / \mathrm{hr} \mathrm{P}$ and $0 \mathrm{~kg} / \mathrm{hr} \mathrm{D}$
Stream 6 carries $0 \mathrm{~kg} / \mathrm{hr} \mathrm{D}$ and $0 \mathrm{~kg} / \mathrm{hr}$ W
Stream 7 carries $0 \mathrm{~kg} / \mathrm{hr} \mathrm{P}, 95 \%$ of D into the decanter, 5% of W into the decanter
Stream 8 carries $0 \mathrm{~kg} / \mathrm{hr} \mathrm{P}$
Stream 9 carries $0 \mathrm{~kg} / \mathrm{hr} P$
Does a solution exist? Is it unique?

Vector Spaces

- \mathbb{R}^{N} is an example of a vector space
- A vectors space is a "special" set of vectors
- Properties of a vector space:
- closed under addition:

$$
\mathbf{x}, \mathbf{y} \in S \Rightarrow \mathbf{x}+\mathbf{y} \in S
$$

- closed under scalar multiplication:

$$
\mathbf{x} \in S \Rightarrow c \mathbf{x} \in S
$$

- contains the null vector:

$$
\mathbf{0} \in S
$$

- has an additive inverse:

$$
\mathbf{x} \in S \Rightarrow(-\mathbf{x}) \in S: \mathbf{x}+(-\mathbf{x})=\mathbf{0}
$$

Vector Spaces

- Is this a vector space?

$$
\{(1,0),(0,1)\}
$$

- Is this a vector space?

$$
\left\{\mathbf{y}: \mathbf{y}=\lambda_{1}(1,0)+\lambda_{2}(0,1) ; \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

- Is this a vector space?

$$
\left\{\mathbf{y}: \mathbf{y}=\lambda_{1}(1,1,0)+\lambda_{2}(1,0,1) ; \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

Vector Spaces

- Is this a vector space?

$$
\{(1,0),(0,1)\}
$$

- Is this a vector space?

$$
\left\{\mathbf{y}: \mathbf{y}=\lambda_{1}(1,0)+\lambda_{2}(0,1) ; \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

- Is this a vector space?

$$
\left\{\mathbf{y}: \mathbf{y}=\lambda_{1}(1,1,0)+\lambda_{2}(1,0,1) ; \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

Vector Spaces

- A "subspace" is a subset of a vector space
- It is still closed under addition and scalar multiplication
- It still contains the null vector
- For example, \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}
- Is this a subspace?

$$
\left\{\mathbf{y}: \mathbf{y}=\lambda((3,0)+(0,1)) ; \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

- The linear combination of a set of vectors:

$$
\mathbf{y}=\sum_{i=1}^{M} \lambda_{i} \mathbf{x}_{i}
$$

- The set of all possible linear combinations of a set of vectors is a subspace:

$$
\begin{aligned}
& \operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{M}\right\} \\
& \quad=\left\{\mathbf{y} \in \mathbb{R}^{N}: \mathbf{y}=\sum_{i=1}^{M} \lambda_{i} \mathbf{x}_{i} ; \lambda_{i} \in \mathbb{R}, i=1, \ldots, M\right\}
\end{aligned}
$$

Linear Dependence

- If at least one non-trivial linear combination of a set of vectors is equal to the null vector, the set is said to be linearly dependent.
- The set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{M}\right\}$ with $\mathbf{x}_{i} \in \mathbb{R}^{N}$ is linearly dependent if there exists at least one $\lambda_{i} \neq 0$ such that:

$$
\sum_{i=1}^{M} \lambda_{i} \mathbf{x}_{i}=0
$$

- If $M>N$, then the set of vectors is always dependent

Linear Dependence

- Example: are the columns of \mathbf{I} linearly dependent?
$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \lambda_{1}+\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \lambda_{2}+\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \lambda_{3}=\left(\begin{array}{l}\lambda_{1} \\ \lambda_{2} \\ \lambda_{3}\end{array}\right)=0$
- Example: are these vectors linearly dependent?

$$
\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)
$$

- In general, if $\mathbf{A x}=0$ has a non-trivial solution, then the vectors $\left(\begin{array}{llll}\mathbf{A}_{1}^{c} & \mathbf{A}_{2}^{c} & \ldots & \left.\mathbf{A}_{M}^{c}\right)\end{array}\right)$ are linearly dependent.

Linear Dependence

- Uniqueness of solutions to: $\mathbf{A x}=\mathbf{b}$
- If we can find one vector for which: $\mathbf{A x}=0$, then a unique solution cannot exist.
- Proof:
- Let $\mathbf{x}=\mathbf{x}^{H}+\mathbf{x}^{P}$, and $\mathbf{A} \mathbf{x}^{H}=0$ while $\mathbf{A} \mathbf{x}^{P}=\mathbf{b}$
- If $\mathbf{x}^{H} \neq 0, \mathbf{x}=c \mathbf{x}^{H}+\mathbf{x}^{P}$ is another solution.
- Therefore, \mathbf{x} cannot be unique.
- Uniqueness of solutions requires the columns of a matrix be linearly independent!
- $\left(\begin{array}{llll}\mathbf{A}_{1}^{c} & \mathbf{A}_{2}^{c} & \ldots & \mathbf{A}_{M}^{c}\end{array}\right) \mathbf{x}^{H}=0$ only if $\mathbf{x}^{H}=0$
- If a system has more variables than equations, then a unique solution cannot exist. It is under constrained.

Linear Dependence

- The dimension of a subspace is the minimum number of linearly independent vectors required to describe the span:

$$
\begin{aligned}
& S=\operatorname{span}\{(1,0,0),(0,1,0),(0,0,1)\}, \operatorname{dim} S=3 \\
& S=\operatorname{span}\{(1,0,0),(0,1,0),(0,0,1),(0,0,2)\}, \operatorname{dim} S=3
\end{aligned}
$$

- Example: can $\mathbf{A x}=\mathbf{b}$ have a unique solution?

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 4 & 0 \\
2 & 5 & 7 \\
3 & 6 & 8 \\
0 & 7 & 9
\end{array}\right)
$$

Linear Dependence

- The dimension of a subspace is the minimum number of linearly independent vectors required to describe the span:

$$
\begin{aligned}
& S=\operatorname{span}\{(1,0,0),(0,1,0),(0,0,1)\}, \operatorname{dim} S=3 \\
& S=\operatorname{span}\{(1,0,0),(0,1,0),(0,0,1),(0,0,2)\}, \operatorname{dim} S=3
\end{aligned}
$$

- Example: can $\mathbf{A x}=\mathbf{b}$ have a unique solution?

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 4 & 0 \\
2 & 5 & 7 \\
3 & 6 & 8 \\
0 & 7 & 9
\end{array}\right)
$$

Four Fundamental Subspaces

$$
\mathbf{A} \in \mathbb{R}^{N \times M}
$$

- Column space (range space):

$$
\mathcal{R}(\mathbf{A})=\operatorname{span}\left\{\mathbf{A}_{1}^{c}, \mathbf{A}_{2}^{c}, \ldots, \mathbf{A}_{M}^{c}\right\}
$$

- Null space:

$$
\mathcal{N}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{M}: \mathbf{A} \mathbf{x}=0\right\}
$$

- Row space:

$$
\mathcal{R}\left(\mathbf{A}^{T}\right)=\operatorname{span}\left\{\mathbf{A}_{1}^{r}, \mathbf{A}_{2}^{r}, \ldots, \mathbf{A}_{N}^{r}\right\}
$$

- Left null space:

$$
\mathcal{N}\left(\mathbf{A}^{T}\right)=\left\{\mathbf{x} \in \mathbb{R}^{N}: \mathbf{A}^{T} \mathbf{x}=0\right\}
$$

Column Space

$$
\mathbf{A} \in \mathbb{R}^{N \times M} \quad \mathcal{R}(\mathbf{A})=\operatorname{span}\left\{\mathbf{A}_{1}^{c}, \mathbf{A}_{2}^{c}, \ldots, \mathbf{A}_{M}^{c}\right\}
$$

- The column space of \mathbf{A} is a subspace of \mathbb{R}^{N}
- Vectors in $\mathcal{R}(\mathbf{A})$ are linear combinations of the columns of A
- Existence of solutions:
- Consider: $\mathbf{A x}=\mathbf{b}$

$$
\sum_{i=1}^{M} x_{i} \mathbf{A}_{i}^{c}=\mathbf{b}
$$

- If \mathbf{x} exists, then \mathbf{b} is a linear combination of the columns of $\mathbf{A} . \mathbf{b} \in \mathcal{R}(\mathbf{A})$
- Converse: if $\mathbf{b} \notin \mathcal{R}(\mathbf{A})$, then \mathbf{x} cannot exist

Existence of Solutions

$$
\mathbf{A} \in \mathbb{R}^{N \times M} \quad \mathcal{R}(\mathbf{A})=\operatorname{span}\left\{\mathbf{A}_{1}^{c}, \mathbf{A}_{2}^{c}, \ldots, \mathbf{A}_{M}^{c}\right\}
$$

- Solutions to $\mathbf{A x}=\mathbf{b}$ exist only if $\mathbf{b} \in \mathcal{R}(\mathbf{A})$
- Example:
- Does a solution exist with $\mathbf{A}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
- If $\mathbf{b}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$,
- If $\mathbf{b}=\left(\begin{array}{c}0 \\ 1 \\ 0\end{array}\right)$?

Existence of Solutions

$$
\mathbf{A} \in \mathbb{R}^{N \times M} \quad \mathcal{R}(\mathbf{A})=\operatorname{span}\left\{\mathbf{A}_{1}^{c}, \mathbf{A}_{2}^{c}, \ldots, \mathbf{A}_{M}^{c}\right\}
$$

- Solutions to $\mathbf{A x}=\mathbf{b}$ exist only if $\mathbf{b} \in \mathcal{R}(\mathbf{A})$
- Example:
- Does a solution exist with $\mathbf{A}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
- If $\mathbf{b}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$,
- If $\mathbf{b}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$?

Existence of Solutions

- Example:

- Does a solution exist?

$$
\left(\begin{array}{cc}
1 & 1 \\
-2 & 1 \\
1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
3 \\
0 \\
1.1
\end{array}\right)
$$

- What is the column space?
\bullet
- Is $\mathbf{b} \in \mathcal{R}(\mathbf{A})$?

Null Space
 $\mathbf{A} \in \mathbb{R}^{N \times M}$

- The set of all vectors that are transformed into the null vector by \mathbf{A} is called the null space of \mathbf{A}

$$
\mathcal{N}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{M}: \mathbf{A} \mathbf{x}=0\right\}
$$

- The null space is a subset of \mathbb{R}^{M}
- Not the same as $\mathcal{R}(\mathbf{A})$
- $\mathbf{0}$ is in the null space of all matrices but is trivial
- Uniqueness:
- Consider two solutions $\mathbf{A x}=\mathbf{b}, \quad \mathbf{A y}=\mathbf{b}$
- Such that $\mathbf{A}(\mathbf{x}-\mathbf{y})=0$
- If $\operatorname{dim} \mathcal{N}(\mathbf{A})=0$, then $\mathbf{x}-\mathbf{y}=0, \quad \mathbf{x}=\mathbf{y}$
- A unique solution exists

Null Space

- Example:
- A series of chemical reactions: $\mathrm{A} \xrightarrow[\rightarrow]{\stackrel{k_{1}}{\longrightarrow}} \underset{k_{3}}{\stackrel{k_{2}}{\longrightarrow}} \mathrm{C} \underset{k_{5}}{\stackrel{k_{4}}{4}} \mathrm{D}$.
- Conservation equation:

$$
\frac{d}{d t}\left(\begin{array}{c}
{[A]} \\
{[B]} \\
{[C]} \\
{[D]}
\end{array}\right)=\left(\begin{array}{cccc}
-k_{1} & 0 & 0 & 0 \\
k_{1} & -k_{2} & k_{3} & 0 \\
0 & k_{2} & -k_{3}-k_{4} & k_{5} \\
0 & 0 & k_{4} & -k_{5}
\end{array}\right)\left(\begin{array}{c}
{[A]} \\
{[B]} \\
{[C]} \\
{[D]}
\end{array}\right) .
$$

- Steady state: $\left(\begin{array}{cccc}-k_{1} & 0 & 0 & 0 \\ k_{1} & -k_{2} & k_{3} & 0 \\ 0 & k_{2} & -k_{3}-k_{4} & k_{5} \\ 0 & 0 & k_{4} & -k_{5}\end{array}\right)\left(\begin{array}{l}{[A]} \\ {[B]} \\ {[C]} \\ {[D]}\end{array}\right)=0$
- Null space of the rate matrix: $\left(\begin{array}{c}{[A]} \\ {[B]} \\ {[C]} \\ {[D]}\end{array}\right)=c\left(\begin{array}{c}0 \\ \left(k_{3} / k_{2}\right)\left(k_{5} / k_{4}\right) \\ k_{5} / k_{4} \\ 1\end{array}\right)$
- What is this subspace geometrically?

Matrix Rank

$$
\mathbf{A} \in \mathbb{R}^{N \times M}
$$

- Rank of a matrix is the dimension of its column space

$$
r=\operatorname{dim} \mathcal{R}(\mathbf{A})
$$

- Finding the rank: transform to upper triangular form

$$
\mathbf{A} \rightarrow \mathbf{U}
$$

$$
\boldsymbol{U}=\left(\begin{array}{cccc|ccc}
U_{11} & U_{12} & \ldots & U_{1 r} & U_{1(r+1)} & \ldots & U_{1 M} \\
0 & U_{22} & \ldots & U_{2 r} & U_{2(r+1)} & \ldots & U_{2 M} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & U_{r r} & U_{r(r+1)} & \ldots & U_{r M} \\
\hline 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right)
$$

- Rank nullity theorem:

$$
\operatorname{dim} \mathcal{N}(\mathbf{A})=M-r
$$

Existence and Uniqueness

$$
\mathbf{A} \in \mathbb{R}^{N \times M}
$$

- Existence:
- For any \mathbf{b} in $\mathbf{A x}=\mathbf{b}$
- A solution exists only if $r=\operatorname{dim} \mathcal{R}(\mathbf{A})=N$
- Uniqueness:
- A solution is unique only if $\operatorname{dim} \mathcal{N}(\mathbf{A})=0$
- Equivalently when $r=\operatorname{dim} \mathcal{R}(\mathbf{A})=M$

MIT OpenCourseWare
httpV://ocw.mit.edu
10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: httpV://ocw.mit.edu/terms.

