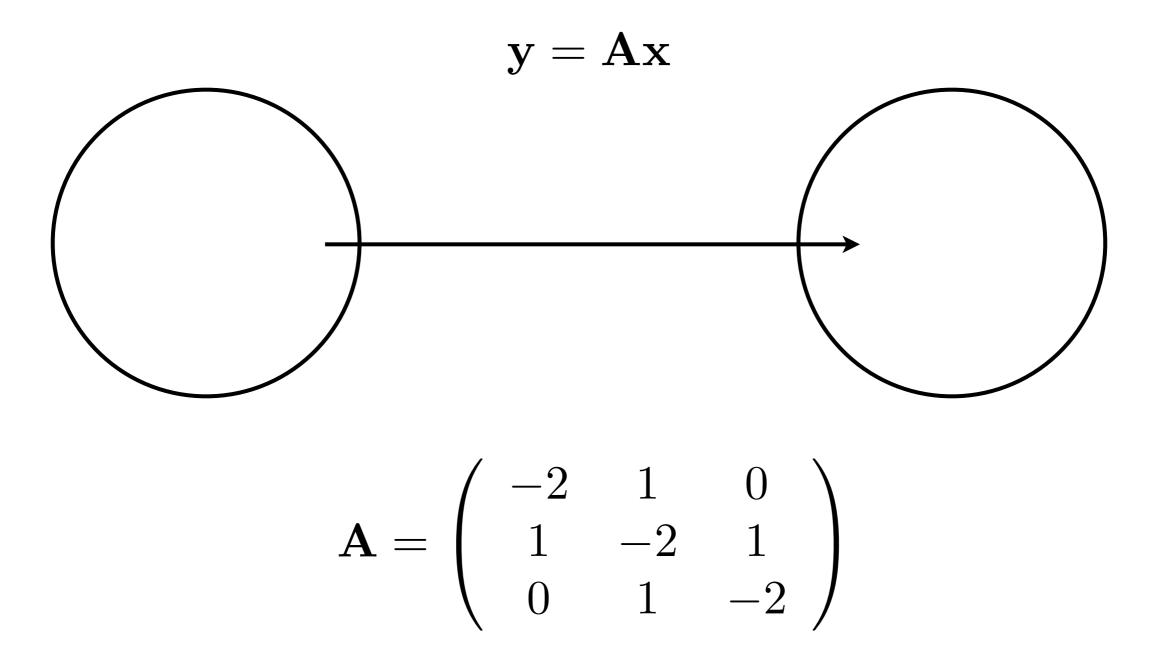
10.34: Numerical Methods Applied to Chemical Engineering

Lecture 3: Existence and uniqueness of solutions Four fundamental subspaces

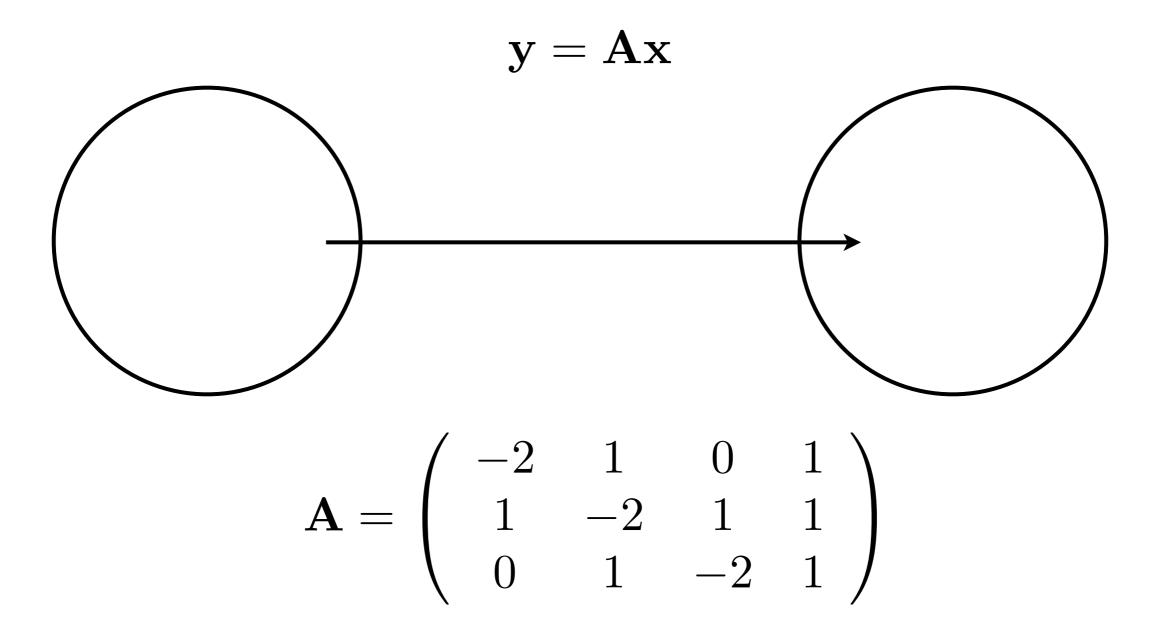
Recap

- Scalars, vectors, and matrices
 - Transformations/maps
 - Determinant
 - Induced norms
 - Condition number

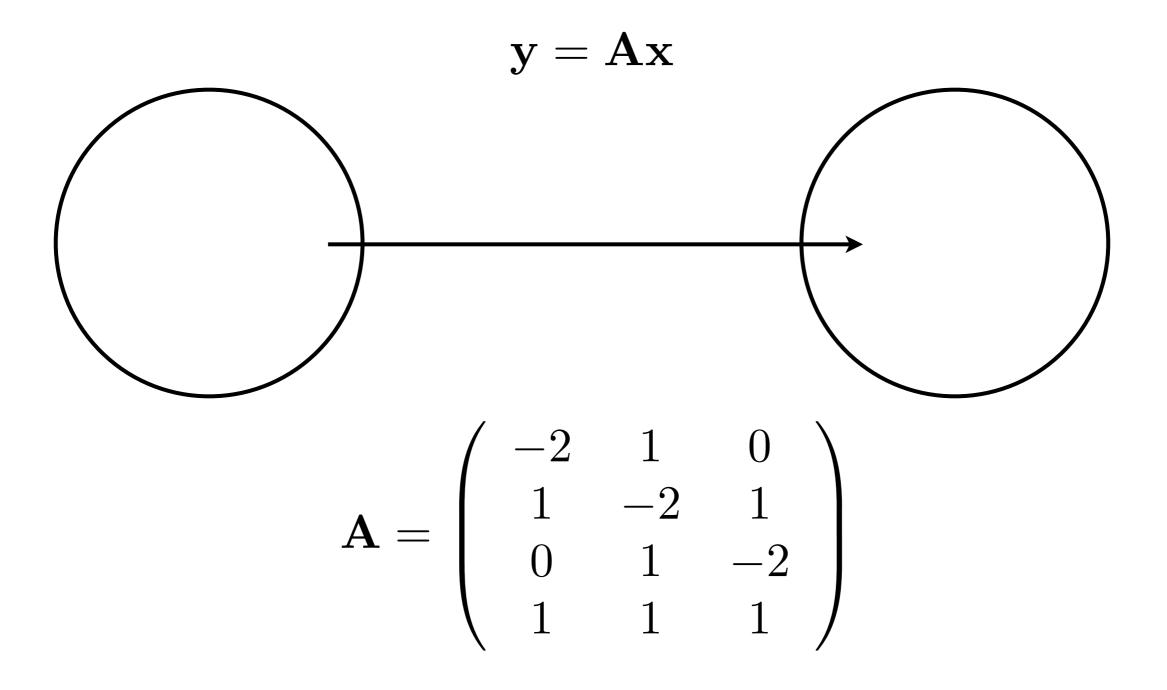
Recap



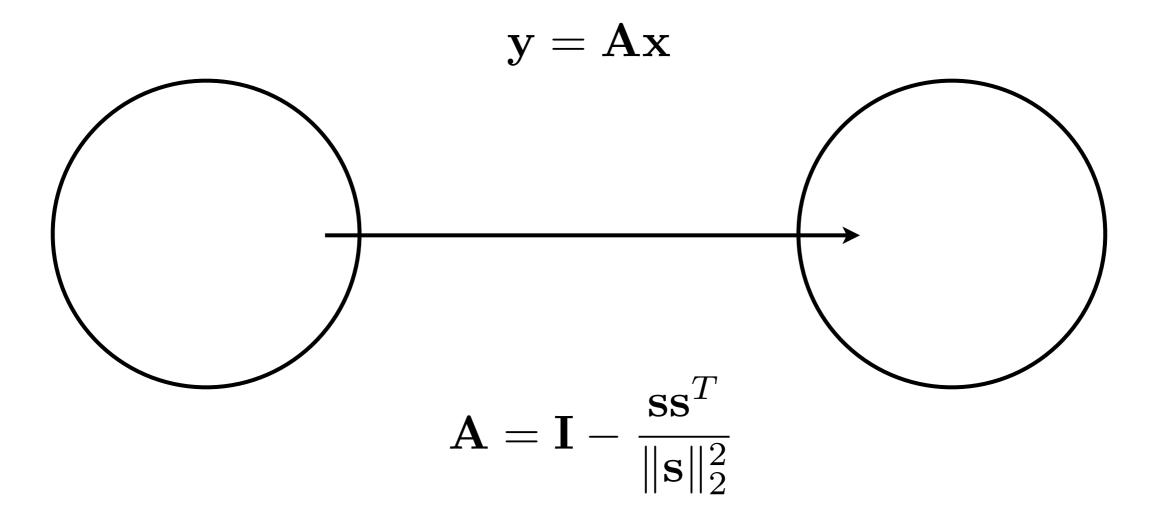
Recap



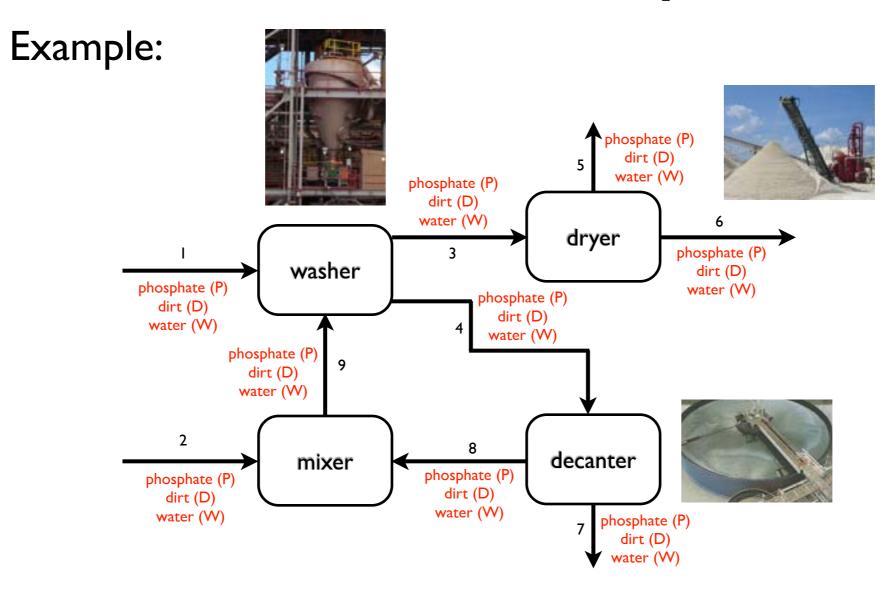
Recap



Recap



Existence and Uniqueness



Stream 1 carries 1800 kg/hr P, 1200 kg/hr D and 0 kg/hr W Stream 2 carries 0 kg/hr P, 0 kg/hr D and 10000 kg/hr W Stream 3 carries 0 kg/hr D and 50% W into the washer Stream 4 carries 0 kg/hr P Stream 5 carries 0 kg/hr P and 0 kg/hr D Stream 6 carries 0 kg/hr D and 0 kg/hr W Stream 7 carries 0 kg/hr P, 95% of D into the decanter, 5% of W into the decanter Stream 8 carries 0 kg/hr P Stream 9 carries 0 kg/hr P

Does a solution exist? Is it unique?

- \mathbb{R}^N is an example of a vector space
- A vectors space is a "special" set of vectors
- Properties of a vector space:
 - closed under addition:

 $\mathbf{x},\mathbf{y}\in S\Rightarrow\mathbf{x}+\mathbf{y}\in S$

• closed under scalar multiplication:

 $\mathbf{x} \in S \Rightarrow c\mathbf{x} \in S$

• contains the null vector:

$\mathbf{0}\in S$

• has an additive inverse:

$$\mathbf{x} \in S \Rightarrow (-\mathbf{x}) \in S : \mathbf{x} + (-\mathbf{x}) = \mathbf{0}$$

• Is this a vector space?

 $\{(1,0),(0,1)\}$

• Is this a vector space?

$$\{\mathbf{y}: \mathbf{y} = \lambda_1(1,0) + \lambda_2(0,1); \ \lambda_1, \lambda_2 \in \mathbb{R}\}\$$

• Is this a vector space?

$$\{\mathbf{y}: \mathbf{y} = \lambda_1(1, 1, 0) + \lambda_2(1, 0, 1); \ \lambda_1, \lambda_2 \in \mathbb{R}\}$$

• Is this a vector space?

 $\{(1,0),(0,1)\}$

• Is this a vector space?

$$\{\mathbf{y}: \mathbf{y} = \lambda_1(1,0) + \lambda_2(0,1); \ \lambda_1, \lambda_2 \in \mathbb{R}\}\$$

• Is this a vector space?

$$\{\mathbf{y}: \mathbf{y} = \lambda_1(1, 1, 0) + \lambda_2(1, 0, 1); \ \lambda_1, \lambda_2 \in \mathbb{R}\}$$

- A "subspace" is a subset of a vector space
 - It is still closed under addition and scalar multiplication
 - It still contains the null vector
 - For example, \mathbb{R}^2 is a subspace of \mathbb{R}^3
 - Is this a subspace?

 $\{\mathbf{y}: \mathbf{y} = \lambda((3,0) + (0,1)); \lambda_1, \lambda_2 \in \mathbb{R}\}$

- The linear combination of a set of vectors: $\mathbf{y} = \sum_{i=1}^M \lambda_i \mathbf{x}_i$
- The set of all possible linear combinations of a set of vectors is a subspace: span{x₁, x₂,..., x_M}
 M

$$= \{ \mathbf{y} \in \mathbb{R}^N : \mathbf{y} = \sum_{i=1}^m \lambda_i \mathbf{x}_i; \ \lambda_i \in \mathbb{R}, i = 1, \dots, M \}$$

- If at least one non-trivial linear combination of a set of vectors is equal to the null vector, the set is said to be linearly dependent.
 - The set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_M\}$ with $\mathbf{x}_i \in \mathbb{R}^N$ is linearly dependent if there exists at least one $\lambda_i \neq 0$ such that:

$$\sum_{i=1}^{M} \lambda_i \mathbf{x}_i = 0$$

• If M > N, then the set of vectors is always dependent

• Example: are the columns of $\, {f I} \,$ linearly dependent?

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix} \lambda_1 + \begin{pmatrix} 0\\1\\0 \end{pmatrix} \lambda_2 + \begin{pmatrix} 0\\0\\1 \end{pmatrix} \lambda_3 = \begin{pmatrix} \lambda_1\\\lambda_2\\\lambda_3 \end{pmatrix} = 0$$

• Example: are these vectors linearly dependent?

$$\left(\begin{array}{c}2\\-1\\0\end{array}\right), \left(\begin{array}{c}-1\\2\\-1\end{array}\right), \left(\begin{array}{c}0\\-1\\2\end{array}\right)$$

• In general, if $\mathbf{A}\mathbf{x} = 0$ has a non-trivial solution, then the vectors $(\mathbf{A}_1^c \ \mathbf{A}_2^c \ \dots \ \mathbf{A}_M^c)$ are linearly dependent.

- Uniqueness of solutions to: Ax = b
 - If we can find one vector for which: Ax = 0, then a unique solution cannot exist.
 - Proof:
 - Let $\mathbf{x} = \mathbf{x}^H + \mathbf{x}^P$, and $\mathbf{A}\mathbf{x}^H = 0$ while $\mathbf{A}\mathbf{x}^P = \mathbf{b}$
 - If $\mathbf{x}^H \neq 0$, $\mathbf{x} = c\mathbf{x}^H + \mathbf{x}^P$ is another solution.
 - Therefore, \mathbf{x} cannot be unique.
- Uniqueness of solutions requires the columns of a matrix be linearly independent!

•
$$(\mathbf{A}_1^c \ \mathbf{A}_2^c \ \dots \ \mathbf{A}_M^c) \mathbf{x}^H = 0$$
 only if $\mathbf{x}^H = 0$

 If a system has more variables than equations, then a unique solution cannot exist. It is under constrained.

- The dimension of a subspace is the minimum number of linearly independent vectors required to describe the span:
- $S = \operatorname{span}\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}, \dim S = 3$
- $S = \operatorname{span}\{(1,0,0), (0,1,0), (0,0,1), (0,0,2)\}, \dim S = 3$
 - Example: can $\mathbf{A}\mathbf{x} = \mathbf{b}$ have a unique solution?

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 5 & 7 \\ 3 & 6 & 8 \\ 0 & 7 & 9 \end{pmatrix}$$

- The dimension of a subspace is the minimum number of linearly independent vectors required to describe the span:
- $S = \operatorname{span}\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}, \dim S = 3$
- $S = \operatorname{span}\{(1,0,0), (0,1,0), (0,0,1), (0,0,2)\}, \dim S = 3$
 - Example: can Ax = b have a unique solution?

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 5 & 7 \\ 3 & 6 & 8 \\ 0 & 7 & 9 \end{pmatrix}$$

Four Fundamental Subspaces

 $\mathbf{A} \in \mathbb{R}^{N \times M}$

• Column space (range space):

$$\mathcal{R}(\mathbf{A}) = \operatorname{span}\{\mathbf{A}_1^c, \mathbf{A}_2^c, \dots, \mathbf{A}_M^c\}$$

• Null space:

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^M : \mathbf{A}\mathbf{x} = 0 \}$$

• Row space:

$$\mathcal{R}(\mathbf{A}^T) = \operatorname{span}\{\mathbf{A}_1^r, \mathbf{A}_2^r, \dots, \mathbf{A}_N^r\}$$

• Left null space:

$$\mathcal{N}(\mathbf{A}^T) = \{ \mathbf{x} \in \mathbb{R}^N : \mathbf{A}^T \mathbf{x} = 0 \}$$

Column Space

 $\mathbf{A} \in \mathbb{R}^{N \times M} \quad \mathcal{R}(\mathbf{A}) = \operatorname{span}\{\mathbf{A}_1^c, \mathbf{A}_2^c, \dots, \mathbf{A}_M^c\}$

- The column space of ${f A}$ is a subspace of ${\Bbb R}^N$
- Vectors in $\mathcal{R}(\mathbf{A})$ are linear combinations of the columns of \mathbf{A}
- Existence of solutions:

• Consider:
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\sum_{i=1}^{M} x_i \mathbf{A}_i^c = \mathbf{b}$$

- If x exists, then b is a linear combination of the columns of $A.\ b\in \mathcal{R}(A)$
- Converse: if $\mathbf{b} \notin \mathcal{R}(\mathbf{A})$, then \mathbf{x} cannot exist

Existence of Solutions

 $\mathbf{A} \in \mathbb{R}^{N \times M} \quad \mathcal{R}(\mathbf{A}) = \operatorname{span}\{\mathbf{A}_1^c, \mathbf{A}_2^c, \dots, \mathbf{A}_M^c\}$

- Solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ exist only if $\mathbf{b} \in \mathcal{R}(\mathbf{A})$
 - Example:
 Does a solution exist with A

$$= \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

• If
$$\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
?

• If
$$\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
?

Existence of Solutions

 $\mathbf{A} \in \mathbb{R}^{N \times M} \quad \mathcal{R}(\mathbf{A}) = \operatorname{span}\{\mathbf{A}_1^c, \mathbf{A}_2^c, \dots, \mathbf{A}_M^c\}$

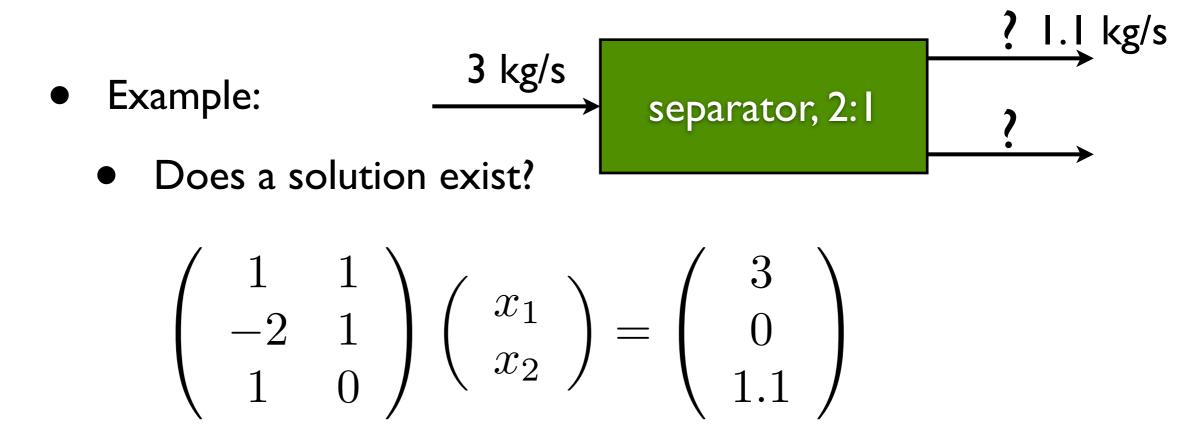
- Solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ exist only if $\mathbf{b} \in \mathcal{R}(\mathbf{A})$
 - Example:
 Does a solution exist with A =

$$= \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

• If
$$\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
?

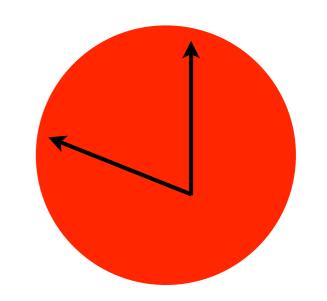
• If
$$\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
?

Existence of Solutions



• What is the column space?

• Is $\mathbf{b} \in \mathcal{R}(\mathbf{A})$?



Null Space $\mathbf{A} \in \mathbb{R}^{N \times M}$

• The set of all vectors that are transformed into the null vector by ${\bf A}$ is called the null space of ${\bf A}$

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^M : \mathbf{A}\mathbf{x} = 0 \}$$

- The null space is a subset of \mathbb{R}^M
 - Not the same as $\mathcal{R}(\mathbf{A})$
- 0 is in the null space of all matrices but is trivial
- Uniqueness:
 - Consider two solutions $\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{A}\mathbf{y} = \mathbf{b}$
 - Such that $\mathbf{A}(\mathbf{x} \mathbf{y}) = 0$
 - If $\dim \mathcal{N}(\mathbf{A}) = 0$, then $\mathbf{x} \mathbf{y} = 0$, $\mathbf{x} = \mathbf{y}$
 - A unique solution exists

Null Space

- Example:
 - A series of chemical reactions: $A \xrightarrow{k_1} B \xleftarrow{k_2}{k_3} C \xleftarrow{k_4}{k_5} D.$
 - Conservation equation:

$$\frac{d}{dt} \begin{pmatrix} [A] \\ [B] \\ [C] \\ [D] \end{pmatrix} = \begin{pmatrix} -k_1 & 0 & 0 & 0 \\ k_1 & -k_2 & k_3 & 0 \\ 0 & k_2 & -k_3 - k_4 & k_5 \\ 0 & 0 & k_4 & -k_5 \end{pmatrix} \begin{pmatrix} [A] \\ [B] \\ [C] \\ [D] \end{pmatrix}.$$

• Steady state:
$$\begin{pmatrix} -k_1 & 0 & 0 & 0 \\ k_1 & -k_2 & k_3 & 0 \\ 0 & k_2 & -k_3 - k_4 & k_5 \\ 0 & 0 & k_4 & -k_5 \end{pmatrix} \begin{pmatrix} [A] \\ [B] \\ [C] \\ [D] \end{pmatrix} = 0$$

• Null space of the rate matrix: $\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$

$$\begin{bmatrix} [A] \\ [B] \\ [C] \\ [D] \end{bmatrix} = c \begin{pmatrix} 0 \\ (k_3/k_2) (k_5/k_4) \\ k_5/k_4 \\ 1 \end{pmatrix}$$

• What is this subspace geometrically?

Matrix Rank

 $\mathbf{A} \in \mathbb{R}^{N \times M}$

• Rank of a matrix is the dimension of its column space

 $r = \dim \mathcal{R}(\mathbf{A})$

• Finding the rank: transform to upper triangular form

$$\mathbf{A} \to \mathbf{U}$$

$$U = \begin{pmatrix} U_{11} & U_{12} & \dots & U_{1r} & U_{1(r+1)} & \dots & U_{1M} \\ 0 & U_{22} & \dots & U_{2r} & U_{2(r+1)} & \dots & U_{2M} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & U_{rr} & U_{r(r+1)} & \dots & U_{rM} \\ \hline 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}$$

• Rank nullity theorem:

$$\dim \mathcal{N}(\mathbf{A}) = M - r$$

Existence and Uniqueness

$$\mathbf{A} \in \mathbb{R}^{N \times M}$$

- Existence:
 - For any \mathbf{b} in $\mathbf{A}\mathbf{x} = \mathbf{b}$
 - A solution exists only if $r = \dim \mathcal{R}(\mathbf{A}) = N$
- Uniqueness:
 - A solution is unique only if $\dim \mathcal{N}(\mathbf{A}) = 0$
 - Equivalently when $r = \dim \mathcal{R}(\mathbf{A}) = M$

10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

For information about citing these materials or our Terms of Use, visit: http•://ocw.mit.edu/terms.