10.34: Numerical Methods Applied to Chemical Engineering

Lecture 9:
Homotopy and bifurcation

Recap

- Quasi-Newton-Raphson methods

Recap

$$
x_{i+1}=x_{i}-\alpha \frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

backtracking line search

Recap

Good Initial Guesses

- Solving nonlinear equations and optimization require good initial guesses
- Where do these come from?
- Nonlinear equations can have multiple roots, optimization problems can have multiple minima.
- How can we find them all?
- The concepts of continuation, homotopy and bifurcation are useful in this regard.

Continuation

- Example:
- Find the roots of: $f(x)=x^{3}-2 x+1$

Continuation

- Example:
- Find the roots of: $f(x)=x^{3}-2 x+1$
- Guess the roots based on a plot of the function
- easy in I-D, hard in many dimensions
- Transform the problem from an easy to solve one to the problem we want to solve:
- Let $f(x)=x^{3}-2 \lambda x+1$
- Find roots as λ grows from zero to one
- When $\lambda=0, x=-1$
- Use solution for one value of λ as guess for next

Continuation

- Example:
- Find the roots of: $f(x)=x^{3}-2 x+1$

$$
f(x)=x^{3}-2 \lambda x+1
$$

```
lambda = [ 0:0.01:1 ];
xguess = -1;
for i = 1:length( lambda )
    f = @( x ) x .^ 3-2 * lambda( i ) * x + 1;
    x( i ) = fzero( @( x ) f( x ), xguess );
    xguess = x( i );
end;
```


Continuation

- Example:
- Find the roots of: $f(x)=x^{3}-2 x+1$

Continuation

- Example:
- Find the roots of: $f(x)=x^{3}-2 x+1$
- Transform the problem from an easy to solve one to the problem we want to solve:
- Let $f(x)=x^{3}-2 \lambda x+1$
- When λ is large $x \approx 1 /(2 \lambda), \pm \sqrt{2 \lambda}$
- Start with large λ and trace back to $\lambda=1$

Continuation

- Example:
- Find the roots of: $f(x)=x^{3}-2 x+1$

Continuation

- Example:
- Find the roots of: $f(x)=x^{3}-2 x+1$

Continuation

- Continuation can be used to generate a sequence of good initial guesses to different problems by varying a parameter by a small amount.
- Examples:
- fluid mechanics problems by varying the Reynolds number
- mass transport problems by varying the Peclet number
- multicomponent phase equilibria problems by varying temperature/pressure
- reaction equilibrium problems by varying reaction rates

Homotopy

- This transformation from one problem to another is termed homotopy.
- Generically, we seek the roots $\mathbf{x}^{*}(\lambda)$ of an equation:

$$
\mathbf{h}(\mathbf{x} ; \lambda)=\lambda \mathbf{f}(\mathbf{x})+(1-\lambda) \mathbf{g}(\mathbf{x})
$$

- When $\lambda=0, \quad \mathbf{h}(\mathbf{x} ; 0)=\mathbf{g}(\mathbf{x})$
- The roots $\mathbf{x}^{*}(0)$ are the roots of $\mathbf{g}(\mathbf{x})$
- When $\lambda=1, \mathbf{h}(\mathbf{x} ; 1)=\mathbf{f}(\mathbf{x})$
- The roots $\mathbf{x}^{*}(1)$ are the roots of $\mathbf{f}(\mathbf{x})$
- There is a smooth transformation from $\mathbf{g}(\mathbf{x})$ to $\mathbf{f}(\mathbf{x})$
- λ is varied in small increments from zero to one and the solution $\mathbf{x}^{*}\left(\lambda_{i}\right)$ is used as the initial guess for $\mathbf{x}^{*}\left(\lambda_{i+1}\right)$

Homotopy

- For small changes in the homotopy parameter, the previous solution will be a good initial guess.
- Newton-Raphson like methods can be expected to converge quickly.
- In practice, the function $\mathbf{f}(\mathbf{x})$ is associated with the problem of interest, but the function $\mathbf{g}(\mathbf{x})$ is arbitrary.
- It may be difficult to find a good function $\mathbf{g}(\mathbf{x})$
- Physically based homotopies are usually preferable.

Homotopy

- Example:
- Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$
$f(\hat{v})=\left(\hat{P}+\frac{3}{\hat{v}^{2}}\right)\left(\hat{v}-\frac{1}{3}\right)-\frac{8}{3} \hat{T}=0$

Homotopy

- Example:
- Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

$$
f(\hat{v})=\left(\hat{P}+\frac{3}{\hat{v}^{2}}\right)\left(\hat{v}-\frac{1}{3}\right)-\frac{8}{3} \hat{T}=0
$$

- Create the homotopy:

$$
h(\hat{v})=\lambda f(\hat{v})+(1-\lambda) g(\hat{v})
$$

- with the ideal gas function:

$$
g(\hat{v})=\hat{P} \hat{v}-\frac{8}{3} \hat{T}
$$

- $\lambda=0$, ideal gas; $\lambda=1$, van der Waals

Homotopy

- Example:
- Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

$$
\begin{aligned}
& T=0.5 ; \\
& P=0.1 ;
\end{aligned}
$$

vguess $=8 / 3 * T / P ;$

```
f=@(v )(P + 3./v .^ 2 ).* (v - 1/ 3 ) - 8/ 3 * T;
g=@(v ) P.* v - 8/ 3* T;
h = @( v, l ) l * f( v ) + ( 1-l ) * g( v );
lambda = [ 0:0.01:1];
for i = 1:length( lambda )
v( i ) = fzero( @( v ) h( v, lambda( i ) ), vguess );
vguess = v( i );
```

end;

Homotopy

- Example:
- Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

Homotopy

- Example:
- Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

Homotopy

- Example:
- Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

Homotopy

- Example:
- Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

Arclength Continuation

- Parameterize the roots and homotopy parameter in terms of the distance travelled along the solution curve:
- $\mathbf{x}^{*}(\lambda(s)), \lambda(s)$
- Determine how to change homotopy parameter from arclength constraint:

$$
\left\|\frac{d}{d s} \mathbf{x}^{*}(\lambda(s))\right\|_{2}^{2}+\left(\frac{d}{d s} \lambda(s)\right)^{2}=1
$$

Bifurcation

- Example:
- Find the real roots of $f(x)=x^{3}-r x$

Bifurcation

- Example:
- Find the real roots of $f(x)=x^{3}-r x$

$$
r<0, x^{*}=0
$$

Bifurcation

- Occasionally, a problem will switch from having I solution to having many solutions as a parameter is varied.
- We have seen how this occurs discontinuously with turning points.
- When additional solutions appear continuously, it is termed bifurcation.
- Bifurcations in a homotopy enable finding of multiple solutions to the same nonlinear equation
- Finding bifurcation (and turning) points can be of great physical interest.
- Like turning points, the Jacobian is singular at a bifurcation point: $\operatorname{det} \mathbf{J}\left(\mathbf{x}^{*}\right)=0$

$\mathbf{h}\left(\mathbf{x}, \lambda_{i-1}\right)=0 \quad$ Bifurcation

$\mathbf{h}\left(\mathbf{x}, \lambda_{i}\right)=0 \quad$ Bifurcation

Bifurcation

- In practice, it is hard to hit the bifurcation point exactly while stepping with the homotopy parameter.
- The bifurcation is detected by checking the sign of the determinant of the Jacobian.
- If $\operatorname{det} \mathbf{J}_{h}(\mathbf{x}, \lambda)=0$ at the bifurcation, then it changed from positive to negative (or negative to positive) as the homotopy parameter changed.
- We can find the bifurcation point exactly by solving an augmented system of nonlinear equations:

$$
\binom{\mathbf{h}(\mathbf{x} ; \lambda)}{\operatorname{det} \mathbf{J}_{h}(\mathbf{x}, \lambda)}=0
$$

- which finds the value of \mathbf{x} and λ at the bifurcation

Bifurcation

- Example:
- Find the radius where two circles just touch:

$$
\mathbf{f}(\mathbf{x})=\binom{\left(x_{1}+3\right)^{2}+\left(x_{2}+1\right)^{2}-R^{2}}{\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2}-R^{2}}
$$

Bifurcation

- Example:
- Find the radius where two circles just touch:

$$
\mathbf{f}(\mathbf{x})=\binom{\left(x_{1}+3\right)^{2}+\left(x_{2}+1\right)^{2}-R^{2}}{\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2}-R^{2}}
$$

- This is a bifurcation point (from 0 to 2 solutions)

$$
\begin{gathered}
\mathbf{f}(\mathbf{x})=0 \\
\operatorname{det} \mathbf{J}(\mathbf{x})=0
\end{gathered}
$$

- Find this point by solving the augmented equations

$$
\binom{\mathbf{f}(\mathbf{x})}{\operatorname{det} \mathbf{J}(\mathbf{x})}=0 \quad \text { for } \quad \mathbf{y}=\binom{\mathbf{x}}{R}
$$

Bifurcation

- Example:
- Find this point by solving the augmented equations:

$$
\binom{\mathbf{f}(\mathbf{x})}{\operatorname{det} \mathbf{J}(\mathbf{x})}=0 \quad \text { for } \quad \mathbf{y}=\binom{\mathbf{x}}{R}
$$

- Newton-Raphson iteration:

$$
\mathbf{y}_{i+1}=\mathbf{y}_{i}+\Delta \mathbf{y}_{i}
$$

$\left.\left(\begin{array}{cc}\mathbf{J}(\mathbf{x}) & \frac{\partial}{\partial R} \mathbf{f}(\mathbf{x}) \\ \nabla \operatorname{det} \mathbf{J}(\mathbf{x}) & \frac{\partial}{\partial R} \operatorname{det} \mathbf{J}(\mathbf{x})\end{array}\right)\right|_{\mathbf{y}_{i}} \Delta \mathbf{y}_{i}=-\left.\binom{\mathbf{f}(\mathbf{x})}{\operatorname{det} \mathbf{J}(\mathbf{x})}\right|_{\mathbf{y}_{i}}$

MIT OpenCourseWare
httpV://ocw.mit.edu
10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: httpV://ocw.mit.edu/terms.

