10.34: Numerical Methods Applied to Chemical Engineering

Lecture 9: Homotopy and bifurcation

Recap

• Quasi-Newton-Raphson methods

backtracking line search

Good Initial Guesses

- Solving nonlinear equations and optimization require good initial guesses
 - Where do these come from?
- Nonlinear equations can have multiple roots, optimization problems can have multiple minima.
 - How can we find them all?
- The concepts of continuation, homotopy and bifurcation are useful in this regard.

- Example:
 - Find the roots of: $f(x) = x^3 2x + 1$

- Example:
 - Find the roots of: $f(x) = x^3 2x + 1$
 - Guess the roots based on a plot of the function
 - easy in I-D, hard in many dimensions
 - Transform the problem from an easy to solve one to the problem we want to solve:
 - Let $f(x) = x^3 2\lambda x + 1$
 - Find roots as λ grows from zero to one
 - When $\lambda = 0$, x = -1
 - Use solution for one value of λ as guess for next

- Example:
 - Find the roots of: $f(x) = x^3 2x + 1$

$$f(x) = x^3 - 2\lambda x + 1$$

lambda = [0:0.01:1];

xguess = -1;

for i = 1:length(lambda)
f = @(x) x .^ 3 - 2 * lambda(i) * x + 1;
x(i) = fzero(@(x) f(x), xguess);
xguess = x(i);

end;

- Example:
 - Find the roots of: $f(x) = x^3 2x + 1$

- Example:
 - Find the roots of: $f(x) = x^3 2x + 1$
 - Transform the problem from an easy to solve one to the problem we want to solve:

• Let
$$f(x) = x^3 - 2\lambda x + 1$$

- When λ is large $\,x\approx 1/(2\lambda),\pm \sqrt{2\lambda}\,$
- Start with large λ and trace back to $\lambda=1$

- Example:
 - Find the roots of: $f(x) = x^3 2x + 1$

- Example:
 - Find the roots of: $f(x) = x^3 2x + 1$

- Continuation can be used to generate a sequence of good initial guesses to different problems by varying a parameter by a small amount.
 - Examples:
 - fluid mechanics problems by varying the Reynolds number
 - mass transport problems by varying the Peclet number
 - multicomponent phase equilibria problems by varying temperature/pressure
 - reaction equilibrium problems by varying reaction rates

- This transformation from one problem to another is termed homotopy.
- Generically, we seek the roots $\mathbf{x}^*(\lambda)$ of an equation:

$$\mathbf{h}(\mathbf{x};\lambda) = \lambda \mathbf{f}(\mathbf{x}) + (1-\lambda)\mathbf{g}(\mathbf{x})$$

- When $\lambda = 0$, $\mathbf{h}(\mathbf{x}; 0) = \mathbf{g}(\mathbf{x})$
 - The roots $\mathbf{x}^*(0)$ are the roots of $\mathbf{g}(\mathbf{x})$
- When $\lambda = 1$, $\mathbf{h}(\mathbf{x}; 1) = \mathbf{f}(\mathbf{x})$
 - The roots $\mathbf{x}^*(1)$ are the roots of $\mathbf{f}(\mathbf{x})$
- There is a smooth transformation from $\mathbf{g}(\mathbf{x})$ to $\mathbf{f}(\mathbf{x})$
- λ is varied in small increments from zero to one and the solution $\mathbf{x}^*(\lambda_i)$ is used as the initial guess for $\mathbf{x}^*(\lambda_{i+1})$

- For small changes in the homotopy parameter, the previous solution will be a good initial guess.
- Newton-Raphson like methods can be expected to converge quickly.
- In practice, the function $f(\mathbf{x})$ is associated with the problem of interest, but the function $g(\mathbf{x})$ is arbitrary.
 - It may be difficult to find a good function $\mathbf{g}(\mathbf{x})$
 - Physically based homotopies are usually preferable.

- Example:
 - Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

- Example:
 - Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

$$f(\hat{v}) = \left(\hat{P} + \frac{3}{\hat{v}^2}\right)\left(\hat{v} - \frac{1}{3}\right) - \frac{8}{3}\hat{T} = 0$$

• Create the homotopy:

$$h(\hat{v}) = \lambda f(\hat{v}) + (1 - \lambda)g(\hat{v})$$

• with the ideal gas function:

$$g(\hat{v}) = \hat{P}\hat{v} - \frac{8}{3}\hat{T}$$

• $\lambda=0$, ideal gas; $\lambda=1$, van der Waals

- Example:
 - Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

```
T = 0.5;
P = 0.1;
vguess = 8 / 3 * T / P;
f = @(v)(P + 3 . / v .^2) .* (v - 1/3) - 8/3 * T;
g = @(v) P .* v - 8 / 3 * T;
h = @(v, l) l * f(v) + (1 - l) * g(v);
lambda = [0:0.01:1];
for i = 1:length( lambda )
   v(i) = fzero(@(v)h(v, lambda(i)), vguess);
   vguess = v( i );
```

- Example:
 - Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

- Example:
 - Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

- Example:
 - Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

- Example:
 - Find roots of the van der Waals equation of state given: $\hat{P}=0.1, \hat{T}=0.5$

Arclength Continuation

 Parameterize the roots and homotopy parameter in terms of the distance travelled along the solution curve:

• $\mathbf{x}^*(\lambda(s)), \lambda(s)$

• Determine how to change homotopy parameter from arclength constraint:

$$\left\|\frac{d}{ds}\mathbf{x}^*(\lambda(s))\right\|_2^2 + \left(\frac{d}{ds}\lambda(s)\right)^2 = 1$$

- Example:
 - Find the real roots of $f(x) = x^3 rx$

- Example:
 - Find the real roots of $f(x) = x^3 rx$

- Occasionally, a problem will switch from having I solution to having many solutions as a parameter is varied.
- We have seen how this occurs discontinuously with turning points.
- When additional solutions appear continuously, it is termed bifurcation.
- Bifurcations in a homotopy enable finding of multiple solutions to the same nonlinear equation
- Finding bifurcation (and turning) points can be of great physical interest.
- Like turning points, the Jacobian is singular at a bifurcation point: $\det {\bf J}({\bf x}^*)=0$

- In practice, it is hard to hit the bifurcation point exactly while stepping with the homotopy parameter.
 - The bifurcation is detected by checking the sign of the determinant of the Jacobian.
 - If $\det \mathbf{J}_h(\mathbf{x}, \lambda) = 0$ at the bifurcation, then it changed from positive to negative (or negative to positive) as the homotopy parameter changed.
- We can find the bifurcation point exactly by solving an augmented system of nonlinear equations:

$$\left(\begin{array}{c} \mathbf{h}(\mathbf{x};\lambda)\\ \det \mathbf{J}_h(\mathbf{x},\lambda) \end{array}\right) = 0$$

• which finds the value of ${f x}$ and ${f \lambda}$ at the bifurcation

- Example:
 - Find the radius where two circles just touch:

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} (x_1+3)^2 + (x_2+1)^2 - R^2 \\ (x_1-2)^2 + (x_2-2)^2 - R^2 \end{pmatrix}$$

- Example:
 - Find the radius where two circles just touch:

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} (x_1+3)^2 + (x_2+1)^2 - R^2 \\ (x_1-2)^2 + (x_2-2)^2 - R^2 \end{pmatrix}$$

• This is a bifurcation point (from 0 to 2 solutions)

$$\mathbf{f}(\mathbf{x}) = 0$$
$$\det \mathbf{J}(\mathbf{x}) = 0$$

• Find this point by solving the augmented equations

$$\begin{pmatrix} \mathbf{f}(\mathbf{x}) \\ \det \mathbf{J}(\mathbf{x}) \end{pmatrix} = 0 \quad \text{for} \quad \mathbf{y} = \begin{pmatrix} \mathbf{x} \\ R \end{pmatrix}$$

- Example:
 - Find this point by solving the augmented equations:

$$\begin{pmatrix} \mathbf{f}(\mathbf{x}) \\ \det \mathbf{J}(\mathbf{x}) \end{pmatrix} = 0 \quad \text{for} \quad \mathbf{y} = \begin{pmatrix} \mathbf{x} \\ R \end{pmatrix}$$

• Newton-Raphson iteration:

$$\mathbf{y}_{i+1} = \mathbf{y}_i + \Delta \mathbf{y}_i$$

$$\begin{pmatrix} \mathbf{J}(\mathbf{x}) & \frac{\partial}{\partial R} \mathbf{f}(\mathbf{x}) \\ \nabla \det \mathbf{J}(\mathbf{x}) & \frac{\partial}{\partial R} \det \mathbf{J}(\mathbf{x}) \end{pmatrix} \Big|_{\mathbf{y}_i} \Delta \mathbf{y}_i = - \begin{pmatrix} \mathbf{f}(\mathbf{x}) \\ \det \mathbf{J}(\mathbf{x}) \end{pmatrix} \Big|_{\mathbf{y}_i}$$

10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

For information about citing these materials or our Terms of Use, visit: http•://ocw.mit.edu/terms.