
1

Notes on BVP-ODE

-Bill Green

There are multiple methods for solving systems of ordinary differential equations (ODEs) or differential-

algebraic equations (DAEs) posed as boundary value problems (BVPs) of the form:

g(y”(t),y’(t), y(t), t) = 0 at all t in the domain

plus B boundary conditions that hold only at specific values of t called tx:

q(y’(tx),y(tx),tx) = 0 where usually tx=t0 or tx=tf

Note that g and q are vector-valued functions, and y is usually a vector also.

If g represents a first-order system of differential equations, dim(y) =dim(g)=dim(q). If it is second-order

we will need more boundary conditions, dim(q)>dim(g). If it is a DAE we will need fewer. Just because

you have the right number of boundary conditions does not guarantee a unique solution exists: the

system of equations may have no solution or multiple solutions. Usually this can be fixed by changing

the boundary conditions.

Here are some methods for solving BVP-ODE’s:

1) Shooting

Recast the ODE-BVP as an ODE-IVP with some unknown initial values, call these Z. Guess those

unknown values Z and solve the resulting ODE-IVP. The solution Y will not satisfy all the

boundary values Ybc(tf), i.e. there is a deviation

residual(Z) = Y(tf,Z) – Ybc(tf)

where Y(tf,Z) is the computed value of Y(tf) from the ODE-IVP using the initial values Z. So we can

embed that calculation inside a nonlinear equation solver like fsolve, e.g.

 Zbest=fsolve(@residual,Zguess)

 The advantage of shooting is that there are only a few unknown initial conditions, so fsolve is

only solving a few equations with a small Jacobian. The disadvantage is that an ODE-IVP problem must

be solved at each iteration of fsolve, and that can be expensive particularly if an implicit ODE solver is

used.

2

2) Collocation:

Approximate the solution y(t) as a sum of some basis functions:

 y(t) = dn n(t)

This converts the problem into computing the N d’s. The collocation method writes the N

equations required this way: B of the equations come from the boundary conditions. The

remaining N-B equations come from choosing N-B points in the domain {tm} and demanding

 g(y’(tm;d),y(tm;d),tm) = 0 for these particular {tm}

Note that all the equations depend on the unknown vector d, since y is a function of d. So we

could rewrite the equations this way:

 g(d)=0 and q(d)=0

 This is the form for nonlinear equations solvers like fsolve.

Note that the user can choose which basis functions {n(t)} and {tm} which to use; for each

choice you’ll get a different approximate solution y(t). Usually increasing the number of basis

functions and collocation points {tm} increases the accuracy of the approximation. However,

fsolve or similar programs typically need to evaluate the Jacobian of f(d)=(g(d);q(d)), which has

N2 elements. If N is very large this can be expensive and for very large N it is likely that the

cond(Jacobian) will be large. One can make the Jacobian matrix sparser by making using a local

basis (discussed below), that saves CPU time and might improved the conditioning.

Note that a poorly-conditioned Jacobian means that varying some linear combination of the d’s

does not change the quality of the solution very much. This implies that there is a better choice

of basis functions and/or collocation points {tm}.

The disadvantage of collocation is that typically you need a lot of basis functions and collocation

points to achieve high accuracy, so fsolve will need to solve a large system of equations. The

advantage is that not much work is required to compute the residuals (no embedded ODE solves

or numerical integrations).

3

3) Galerkin:

Approximate the solution y(t) as a sum of some basis functions:

 y(t) = dn n(t)

This converts the problem into computing the N d’s. B of the equations come from boundary

conditions. In Galerkin’s method, the N-B additional equations needed to determine the d’s are

of this form:

 k(t) g(y’(t;d),y(t;d),t) = 0

If the integrals can all be evaluated analytically, these integral equations become explicit

algebraic equations in the unknowns d, can be solved using fsolve. This can also work if the

integrals are evaluated numerically, but it may be necessary to re-evaluate numerical integrals

inside each iteration of fsolve, so this can be expensive.

Note that in both Collocation and Galerkin method, fsolve and similar programs evaluate the Jacobian of

the system of equations, which has N2 elements. This can be very large if N is large. One can simplify the

integral evaluations and make the Jacobian sparser (and so easier to evaluate and store) by using a local

basis, discussed below.

4) Finite Differences

A different approach is to approximate all the derivatives by finite-difference expressions. A common

simple approach is to choose a an evenly spaced set of collocation points {tm} and use centered

differences, e.g. approximate y’(tm) = (y(tm+)-y(tm-))/(2t). The unknowns you are solving for are {ym}.

Note this approach only gives you a set of points, not the values between (though you could

interpolate), and it only works if t is small enough that the finite difference closely approximates the

derivative, so you need a lot of points. But this usually gives a sparse Jacobian and it is easy to evaluate

the residuals. You can increase t if you use a high-order finite differencing formula, this add some

bands to the Jacobian but it will still be sparse.

4

Local Basis Functions

It is often beneficial to choose “local” basis functions,

i.e. choose n(t) so that it is only nonzero is a small range, i.e. n(t)=0 if |t-tn|>X

Use of local basis functions makes g(t’) depend only on the small number of basis functions n(t)

with tn close to t’. This directly makes the Jacobian used in the Collocation method very sparse.

Also, in the Galerkin method, if k(t) is local, then one only needs to integrate over a small range

of t’s near tm, and the resulting integral will only depend on a few d’s. So use of a local basis also

make the Jacobian used in the Galerkin method sparse.

The most popular Local Basis functions are B-splines, in particular the 1st-order B-splines called

“tent” functions defined this way:

k(t)=(t-tk-1)/(tk-tk-1) if tk>t>tk-1

k(t)=(tk+1-t)/(tk+1-tk) if tk+1>t>tk

 For all other t, k(t)=0.

With these basis functions, one is trying to do a piecewise linear approximation t the solution y(t). Note

that these basis functions have discontinuous first derivatives. In Galerkin’s method this unsmoothness

doesn’t matter much since one is mostly evaluating integrals. However, it can cause complications if the

boundary conditions involve derivatives, and in the Collocation method one would be well-advised to

avoid the discontinuities, e.g. by choosing {tm} and {tk} so that tm ≠ tk.

MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering
Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

