
10.34: Numerical Methods
Applied to

Chemical Engineering

Finite Volume Methods
Constructing Simulations of PDEs

1

Recap

• von Neumann stability analysis

• Finite volume methods

2

3

• Generally used for conservation equations of the form:

• is the density of a conserved quantity

• is the flux density of a conserved quantity

• The integral version of such an equation is:

Finite Volume Method

@b

@t
= �r · j+ r(x, t)

b(x, t)

j(x, t)

d

dt

Z

V ⇤
b(x, t) dV =

Z

S⇤
n · j(x, t) dS +

Z
r(x, t) dV

V ⇤

d
B⇤(t) = F ⇤(t) +R⇤(t)

dt
ACC IN/OUT GEN/C

or

ON
*

4

•

• What are each of these terms?

• B ⇤(t) = V ⇤b̄⇤(t)

• R ⇤(t) = V ⇤r̄⇤(t)

• F ⇤(t) =
X

Fk(t) =
k2faces⇤ k2

X
A⇤

k(nk

•
faces⇤

· j)(t)

the sum of fluxes through each face of the volume *
db̄⇤

V ⇤ = Fk(t) + V ⇤r̄⇤(t)
dt

• We want to solve for by approximating the reaction and
flux terms. Let’s construct low order approximations physically.

d
B⇤(t) = F ⇤(t) +R⇤(t)

dt
ACC IN/OUT GEN/CON

*

b̄(t)

X

k2faces⇤

Finite Volume Method
Conservation within a finite volume:

5

*

@b
=

@t
�r · j+ r(x, t)

db̄⇤
V ⇤ =

dt
k2

X
Fk(t) + V ⇤r̄⇤(t)

faces⇤

Finite Volume Method

6

*

=
@t

�r · j+ r(x, t)

db̄⇤
V ⇤ =

dt
k2

X
Fk(t) + V ⇤r̄⇤(t)

faces⇤

Finite Volume Method
@b

7

@b
=

@t
�r · j+ r(x, t)

db̄⇤
V ⇤ =

X
Fk(t) + V ⇤r̄⇤(t)

dt
, France k2faces⇤

*

Geometrica: INRIA

Finite Volume Method

© INRIA. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/

8

db̄⇤
V ⇤ =

dt
k2

X
Fk(t) + V ⇤r̄⇤(t)

faces⇤

*Cardiff et al. J Biomech Eng 136(1), 2013

Finite Volume Method
@b

=
@t

�r · j+ r(x, t)

© Cardiff, Philip et al. License: cc by-nc-nd. Some rights reserved. This content is excluded from
our CreativeCommons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/

9

Numerical Solution of PDEs

L

Step 1: domain decomposition
finite difference: nodes

i, j

W

10

Numerical Solution of PDEs

L

W

Step 1: domain decomposition
finite volume: cells

i, j

11L

W

Numerical Solution of PDEs
Step 1: domain decomposition

finite element: elements (local basis functions)

i, j

12

Numerical Solution of PDEs
Step 1: domain decomposition

Always choose the spacing between nodes/dimensions of cells to match the physics.
Never pick a certain number of nodes or cells a priori. That number is irrelevant.

13

19

x-coordinate (cm)

cm
)

(etanidro
co

y-

Concentration profile in (x,y)-space. Thin medical implant at x � [1,2] cm.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

-2

0

2

4

6

8
x 10-4

x-coordinate (cm)

y-
co

or
di

na
te

 (c
m

)

Close-up of concentration profile in (x,y)-space.

R
 =

 3
0,

 B
 =

 2
, N

 =
 3

00
. S

em
i-i

nf
in

ite
 b

ou
nd

ar
y

co
nd

itio
n

at
 x

=R
 a

nd
 y

=B
: D

iri
ch

le
t z

er
o

co
nc

en
tra

tio
n.

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

-2

0

2

4

6

8
x 10-4

Figure 6.2 Concentration profile using Dirichlet boundary condition for x = R and y = B. R = 30

cm, B = 2 cm, and N = 300.

14

Numerical Solution of PDEs
Step 2: formulate an equation to be satisfied at each node/cell

15

Numerical Solution of PDEs
Step 2: formulate an equation to be satisfied at each node/cell
Example: at interior node/cell i,jr2c = 0

equation i,j: ci+1,j + ci�1,j + ci,j�1 + ci,j+1 � 4ci,j = 0

16

Numerical Solution of PDEs
Step 2: formulate an equation to be satisfied at each node/cell
Example: at boundary node/cell i,j

equation i,j:

c = 1

ci,j � 1 = 0

17

Numerical Solution of PDEs
Step 3: solve the system of equations formulated at each node/cell for the

value of unknown function at each node/cell

f(c) = 0 If equations are linear, use linear iterative methods
If equations are nonlinear, use nonlinear iterative methods

18

Numerical Solution of PDEs
Step 3: solve the system of equations formulated at each node/cell for the

value of unknown function at each node/cell

f(c) = 0 must be a vector of the unknowns
 must be a vector of the equations
c
f

19

Numerical Solution of PDEs

1 N
x

Ny

1

2

i

j

Indexing

k = i+ (j � 1)N
x

ci,j+1 = ck+N
xck = ci,j or

k = j + (i� 1)Ny ci,j+1 = ck+1

3,

20

Numerical Solution of PDEs

y

1

, 2

i

j

Indexing

1 N
x

N

k = i+ (j � 1)N
xfk(c) = fi,j(c) or

k = j + (i� 1)Ny

3

21

Numerical Solution of PDEs

Ny

1

2

j

Indexing

1 N
x

k = i+ (j � 1)N
xfk(c) = fi,j(c) or

k = j + (i� 1)Ny

3,

i

22

Numerical Solution of PDEs

N
x

y

Nz

N

cl = ci,j,k, l =?

Exercise: write a single index for finite difference nodes in a cubic
domain with (Nx, Ny, Nz) nodes in each cartesian direction

Numerical Solution of PDEs
Exercise: write a single index for finite difference nodes in a cubic

domain with (Nx, Ny, Nz) nodes in each cartesian direction

N
x

Ny

Nz

c
l

= c
i,j,k

, l = i+ (j � 1)N
x

+ (k � 1)N
x

N
y

23

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

r2c = 0c = 0

c = 0

c = 0

c = 1

f(c) = 0

24

25

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

h = 1 / 10; % Spacing between finite difference nodes
Nx = 1 + 1 / h; % Number of nodes in x-direction
Ny = Nx; % Number of nodes in y-direction

c0 = zeros(Nx * Ny, 1); % Initial guess for solution

c = fsolve(@(c) my_func(c, Nx, Ny), c0); % Find root of FD equations

26

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

function f = my_func(c, Nx, Ny)

% Loop over all nodes
for i = 1:Nx

for j = 1:Ny

k = i + (j - 1) * Nx; % Compound index

% Boundary nodes
if (i == 1)

f(k) = c(k);
elseif (i == Nx)

f(k) = c(k);
elseif(j == 1)

f(k) = c(k) - 1;
elseif(j == Ny)

f(k) = c(k);

% Interior nodes
else

f(k) = c(k + 1) + c(k - 1) + c(k - Nx) + c(k + Nx) - 4*c(k);
end;

end;
end;

27

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.08 seconds to solve

h = 1/10

28

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h = 1/100

700 seconds to solve!
Why is it almost 10,000x slower?

29

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

f(c) = 0 = Ac� b
function [Ac, b] = my_func(c, Nx, Ny)

Ac = sparse(Nx * Ny, 1);
b = sparse(Nx * Ny, 1);

% Loop over all nodes
for i = 1:Nx

for j = 1:Ny

k = i + (j - 1) * Nx; % Compound index

% Boundary nodes
if (i == 1)

Ac(k) = c(k);
elseif (i == Nx)

Ac(k) = c(k);
elseif(j == 1)

Ac(k) = c(k);
b(k) = 1;

elseif(j == Ny)
Ac(k) = c(k);

% Interior nodes
else

Ac(k) = c(k + 1) + c(k - 1) + c(k - Nx) + c(k + Nx) - 4*c(k);
end;

end;
end;

30

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

h = 1 / 10; % Spacing between finite difference nodes
Nx = 1 + 1 / h; % Number of nodes in x-direction
Ny = Nx; % Number of nodes in y-direction

% Calculate RHS of Ac = b
[Ac, b] = my_func(zeros(Nx * Ny, 1), Nx, Ny);

% Find solution of linear FD equations using the an iterative method
% This is gmres (generalized minimum residual). Other choices include
% bicgstab (conjugate gradient), minres (minimum residual), etc.
% The requires a function that returns A*c given c.
c = gmres(@(c) my_func(c, Nx, Ny), b, 100, 1e-6, 100);

31

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

0.015 seconds to solve!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
h = 1/10

32

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

5 seconds to solve!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
h = 1/100

33

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

function [Ac, b] = my_func(c, Nx, Ny)

Ac = sparse(Nx * Ny, 1);
b = sparse(Nx * Ny, 1); k = i+ (j � 1)N

x

% Define indices of boundary points and interior points
 bottom = [1:Nx];
 top = Nx*Ny - [1:Nx];
 left = [1:Nx:Nx*Ny];
 right = [Nx:Nx:Nx*Ny];
 interior = setdiff([1:Nx*Ny], [left, right, bottom, top]);

Ac(left) = c(left);
Ac(right) = c(right);
Ac(top) = c(top);
Ac(bottom) = c(bottom);
b(bottom) = 1;

A(interior) = c(interior - 1) + c(interior + 1) + c(interior - Nx) + c(interior + Nx) …
- 4 * c(interior);

f(c) = 0 = Ac� b

34

Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1.

1.2 seconds to solve!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
h = 1/100

MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering
Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

