10.34: Numerical Methods Applied to Chemical Engineering

Finite Volume Methods
Constructing Simulations of PDEs

Recap

- von Neumann stability analysis
- Finite volume methods

Finite Volume Method

- Generally used for conservation equations of the form:

$$
\frac{\partial b}{\partial t}=-\nabla \cdot \mathbf{j}+r(\mathbf{x}, t)
$$

- $b(\mathbf{x}, t)$ is the density of a conserved quantity
- $\mathbf{j}(\mathbf{x}, t)$ is the flux density of a conserved quantity
- The integral version of such an equation is:

$$
\frac{d}{d t} \int_{V^{*}} b(\mathbf{x}, t) d V=\int_{S^{*}} \mathbf{n} \cdot \mathbf{j}(\mathbf{x}, t) d S+\int_{V^{*}} r(\mathbf{x}, t) d V
$$

or

$$
\begin{gathered}
\frac{d}{d t} B^{*}(t)=F^{*}(t)+R^{*}(t) \\
\text { ACC IN/OUT GEN/CON }
\end{gathered}
$$

Finite Volume Method

- Conservation within a finite volume:

$$
\begin{gathered}
\frac{d}{d t} B^{*}(t)=F^{*}(t)+R^{*}(t) \\
\text { ACC IN/OUT GEN/CON }
\end{gathered}
$$

- What are each of these terms?
- $B^{*}(t)=V^{*} \bar{b}^{*}(t)$
- $R^{*}(t)=V^{*} \bar{r}^{*}(t)$
- $F^{*}(t)=\sum_{k \in \text { faces }^{*}} F_{k}(t)=\sum_{k \in \text { faces }^{*}} A_{k}^{*}\left(\overline{\mathbf{n}_{k} \cdot \mathbf{j}}\right)(t)$
- the sum of fluxes through each face of the volume *

$$
V^{*} \frac{d \bar{b}^{*}}{d t}=\sum_{k \in \mathrm{faces}^{*}} F_{k}(t)+V^{*} \bar{r}^{*}(t)
$$

- We want to solve for $\bar{b}(t)$ by approximating the reaction and flux terms. Let's construct low order approximations physically.

Finite Volume Method

$$
\frac{\partial b}{\partial t}=-\nabla \cdot \mathbf{j}+r(\mathbf{x}, t)
$$

				\downarrow					
			-	$*$	\rightarrow				
				\downarrow					

$V^{*} \frac{d \bar{b}^{*}}{d t}=\sum_{k \in \text { faces }^{*}} F_{k}(t)+V^{*} \bar{r}^{*}(t)$

Finite Volume Method

$$
\frac{\partial b}{\partial t}=-\nabla \cdot \mathbf{j}+r(\mathbf{x}, t)
$$

Finite Volume Method

$$
\frac{\partial b}{\partial t}=-\nabla \cdot \mathbf{j}+r(\mathbf{x}, t)
$$

© INRIA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

$$
V^{*} \frac{d \bar{b}^{*}}{d t}=\sum_{k \in \text { faces }} F_{k}(t)+V^{*} \bar{r}^{*}(t)
$$

Finite Volume Method

$$
\frac{\partial b}{\partial t}=-\nabla \cdot \mathbf{j}+r(\mathbf{x}, t)
$$

(C) Cardiff, Philip et al. License: cc by-nc-nd. Some rights reserved. This content is excluded from our CreativeCommons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

$$
V^{*} \frac{d \bar{b}^{*}}{d t}=\sum_{k \in \text { faces }} F_{k}(t)+V^{*} \bar{r}^{*}(t)
$$

Numerical Solution of PDEs

Step I: domain decomposition finite difference: nodes

Numerical Solution of PDEs

Step I: domain decomposition finite volume: cells

Numerical Solution of PDEs

Step I: domain decomposition
finite element: elements (local basis functions)

Numerical Solution of PDEs

Step I: domain decomposition

Always choose the spacing between nodes/dimensions of cells to match the physics. Never pick a certain number of nodes or cells a priori. That number is irrelevant.

Numerical Solution of PDEs

Step 2: formulate an equation to be satisfied at each node/cell

Numerical Solution of PDEs

Step 2: formulate an equation to be satisfied at each node/cell Example: $\nabla^{2} c=0$ at interior node/cell i,j

equation $\mathrm{i}, \mathrm{j}: ~ c_{i+1, j}+c_{i-1, j}+c_{i, j-1}+c_{i, j+1}-4 c_{i, j}=0$

Numerical Solution of PDEs

Step 2: formulate an equation to be satisfied at each node/cell Example: $c=1 \quad$ at boundary node/cell i, j

equation $\mathrm{i}, \mathrm{j}: c_{i, j}-1=0$

Numerical Solution of PDEs

Step 3: solve the system of equations formulated at each node/cell for the value of unknown function at each node/cell

$\mathbf{f}(\mathbf{c})=0$
If equations are linear, use linear iterative methods If equations are nonlinear, use nonlinear iterative methods

Numerical Solution of PDEs

Step 3: solve the system of equations formulated at each node/cell for the value of unknown function at each node/cell

$\mathbf{f}(\mathbf{c})=0$
C must be a vector of the unknowns
f must be a vector of the equations

Numerical Solution of PDEs

Numerical Solution of PDEs

$$
f_{k}(\mathbf{c})=f_{i, j}(\mathbf{c}) \quad \begin{aligned}
& k=i+(j-1) N_{x} \\
& k=j+(i-1) N_{y}
\end{aligned}
$$

Numerical Solution of PDEs

$$
f_{k}(\mathbf{c})=f_{i, j}(\mathbf{c}) \quad \begin{aligned}
& k=i+(j-1) N_{x} \\
& k=j+(i-1) N_{y}
\end{aligned}
$$

Numerical Solution of PDEs

Exercise: write a single index for finite difference nodes in a cubic domain with ($\mathrm{N} x, \mathrm{Ny}, \mathrm{Nz}$) nodes in each cartesian direction

$$
c_{l}=c_{i, j, k}, \quad l=?
$$

Numerical Solution of PDEs

Exercise: write a single index for finite difference nodes in a cubic domain with ($\mathrm{N} x, \mathrm{Ny}, \mathrm{Nz}$) nodes in each cartesian direction

$$
c_{l}=c_{i, j, k}, \quad l=i+(j-1) N_{x}+(k-1) N_{x} N_{y}
$$

Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$.

$$
\mathbf{f}(\mathbf{c})=0
$$

Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$.

```
h = 1 / 10; % Spacing between finite difference nodes
Nx = 1 + 1 / h; % Number of nodes in x-direction
Ny = Nx; % Number of nodes in y-direction
c0 = zeros( Nx * Ny, 1 ); % Initial guess for solution
c = fsolve( @( c ) my_func( c, Nx, Ny ), c0 ); % Find root of FD equations
```


Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$. function $f=m y _f u n c(c, N x, N y)$

```
\% Loop over all nodes
for \(i=1: N x\)
    for \(j=1:\) Ny
\(\mathrm{k}=\mathrm{i}+(\mathrm{j}-1) * N \mathrm{~N}\); \% Compound index
\% Boundary nodes
if ( i == 1 )
            \(f(k)=c(k) ;\)
elseif ( i == Nx )
            \(f(k)=c(k) ;\)
elseif( j == 1 )
        \(f(k)=c(k)-1 ;\)
elseif( \(j==\) Ny )
        \(f(k)=c(k)\);
\% Interior nodes
else
        \(f(k)=c(k+1)+c(k-1)+c(k-N x)+c(k+N x)-4 * c(k) ;\)
end;
```

end;

Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$.

Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$.

$$
h=1 / 100
$$

700 seconds to solve!
Why is it almost $10,000 x$ slower?

Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$.

$$
\mathbf{f}(\mathbf{c})=0=\mathbf{A} \mathbf{c}-\mathbf{b}
$$

function [Ac, b] = my_func(c, Nx, Ny)

```
Ac = sparse( Nx * Ny, 1 );
b = sparse( Nx * Ny, 1 );
% Loop over all nodes
for i = 1:Nx
    for j = 1:Ny
        k = i + ( j - 1 ) * Nx; % Compound index
        % Boundary nodes
        if ( i == 1 )
            Ac( k ) = c( k );
        elseif ( i == Nx )
            Ac( k ) = c( k );
        elseif( j == 1 )
            Ac( k ) = c( k );
            b( k ) = 1;
        elseif( j == Ny )
            Ac( k ) = c( k );
        % Interior nodes
        else
            Ac( k ) = c( k + 1 ) + c( k - 1 ) + c( k - Nx ) + c( k + Nx ) - 4* c( k );
        end;
```

 end;
 end;

Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$.

```
h = 1 / 10; % Spacing between finite difference nodes
Nx = 1 + 1 / h; % Number of nodes in x-direction
Ny = Nx; % Number of nodes in y-direction
% Calculate RHS of Ac = b
[ Ac, b ] = my_func( zeros( Nx * Ny, 1 ), Nx, Ny );
% Find solution of linear FD equations using the an iterative method
% This is gmres (generalized minimum residual). Other choices include
% bicgstab (conjugate gradient), minres (minimum residual), etc.
% The requires a function that returns A*c given c.
c = gmres( @( c ) my_func( c, Nx, Ny ), b, 100, 1e-6, 100 );
```


Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$.

0.015 seconds to solve!

Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$.

5 seconds to solve!

Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$.

$$
\mathbf{f}(\mathbf{c})=0=\mathbf{A} \mathbf{c}-\mathbf{b}
$$

```
function [ Ac, b ] = my_func( c, Nx, Ny )
Ac = sparse( Nx * Ny, 1 );
b = sparse( Nx * Ny, 1 );
k=i+(j-1)N}\mp@subsup{N}{x}{
% Define indices of boundary points and interior points
bottom = [ 1:Nx];
top = Nx*Ny - [ 1:Nx];
left = [ 1:Nx:Nx*Ny ];
right = [ Nx:Nx:Nx*Ny ];
interior = setdiff( [ 1:Nx*Ny ], [ left, right, bottom, top ] );
Ac( left ) = c( left );
Ac( right ) = c( right );
Ac( top ) = c( top );
Ac( bottom ) = c( bottom );
b( bottom ) = 1;
A( interior ) = c( interior - 1 ) + C( interior + 1 ) + C( interior - Nx ) + c( interior + Nx ) ...
    - 4 * c( interior );
```


Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side $=\mathrm{I}$.

I. 2 seconds to solve!

MIT OpenCourseWare
https://ocw.mit.edu
10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

