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Metropolis Monte Carlo Algorithm 

 
The Metropolis Monte Carlo method is very useful for calculating many-

dimensional integration. For e.g. in statistical mechanics in order to calculate the 
prosperities of the system you are required to use ensemble average. The ensemble 
average of any property B is given by: 
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where wN is the statistical weighting function, rN is configuration space (a 3N 
dimensional vector of spatial coordinates), pN is momentum space (a 3N dimensional 
vector of momentum). Both the numerators as well as the denominator have 6N integrals 
to be computed. We can use Monte Carlo method to evaluate these integrals. This 
consists of simply summing over random points sampled according to the probability 
distribution. Rewriting the above expression in terms of the probability distribution P(rN, 
pN): 
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where P is defined as: 
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If we had a simple explicit form for P we could try to sample directly from that 
distribution, and then evaluate B at these points. However, since the denominator of the 
expression for P is so difficult to evaluate, instead we would like to use a method that 
works directly with w. Now let us see how to implement the Metropolis Monte Carlo 
Method to solve the integral using the weighting function. Following is the algorithm: 
 
Metropolis Monte Carlo Method: 
 
We have to generate a random sequence q[1], q[2], q[3] …of states to solve for the integral. 
We start with some value for q and then make moves to different states. For the kth 
iteration (move), you are at a state q[k] and have a scalar “Sum” defined, where this scalar 
holds the value of the integral we are attempting to solve: 
 

1) Randomly generate a step Δq (e.g. using Ndim random numbers from rand 
function, Δq(n) =Δ*(2*rand-1), for n=1..Ndim, where Δ is the maximum 
allowable displacement in any of the coordinates in successive iterations) 
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2) Propose a new state q[proposed] = q[k] + Δq 
 

3) Compute w(q[proposed])  and w(q[k]), 
If w(q[proposed]) > w(q[k]) then 

q[k+1] = q[proposed] 
else if w(q[proposed]) / w(q[k]) > rand 

q[k+1] = q[proposed] 
else 

q[k+1] = q[k] 

 
4) Sum = Sum + B(q[k+1]) 
 
5) <B> = Sum/(No. of random points) 

 
Note: “rand” is a uniformly-distributed random number from 0 (zero) to 1 (one).   
 
The goal of the Metropolis MC method is to generate N states of q such that: 
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where the variable Nqi represents the number of molecules in state qi and the weighting 
function w is known.  Two questions that may be on your mind are: 

 How do we know that the Metropolis MC method actually achieves this goal? 
 Why do we use the particular acceptance criteria: w(q[proposed]) / w(q[k]) > rand? 

 
Discussion: 
 
Suppose we have a state in our system, qi.  If we wanted to calculate the total number of 
qi states in our system, Nqi, we would need to worry about two terms: 
 
(1) The state qi moved from another state in our system qj≠i: 
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(2) Our system tried to move out of state qi but remained there: 
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The P(qi|qj) expressions are conditional probabilities, which represent the probability of 
moving to state qi given that we were in state qj.  Summing these two expressions gives 
us the total number of states in our system in state qi: 
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where ΔNqi is defined as: 
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We know the values of the conditional probabilities from our acceptance criteria: 
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Looking at one of the other states in our system, qk: 
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If w(qi) < w(qk): 
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If w(qk) < w(qi): 
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When ΔNqi = 0, both of the preceding equations tell us: 
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If we choose this constant to be N, the total number of molecules, then we’ve reached the 
“goal” of the Metropolis MC method (as stated approximately half-way down the second 
page): 
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Notice, there is nothing special about states i, j, or k in this derivation.  Thus, the 
preceding equation is true for all states i in our system.  Another way to think about the 
above expression is that there will be no change in the system (ΔNqi = 0) once the 
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relative populations of all states (Nqi / N) reach their expected probability (wqi) … a MC 
way of saying “system has reached equilibrium.” 
 
Returning to our expressions for ΔNqi: 
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Imagine ΔNqi > 0: 
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This expression tells us there are more molecules in state qk (and less molecules in state 
qi) than what we would expect based on the ratio of their probabilities.  Thus, ΔNqi is 
increasing to counter that effect.  Similarly, imagine ΔNqi < 0: 
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In this case, there are more molecules in the state qi (and less in state qk) than we would 
expect based on their probabilities.  However, ΔNqi is decreasing to counter this.  Thus, 
the system is always trying to reach equilibrium. 
 
Simple Example with Metropolis MC Method: 
 
Suppose we want to solve following integral using Metropolis Monte Carlo Method: 
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Here, we have f(x) = x2 and weighting function w(x) = 1.5 – x. We have to generate 
random sequence of x values in (0,1) and accept them on the basis of weighting function. 
Let us start with x0 = 0.25 (arbitrarily chosen). Generate N random numbers between 0 
and 1. For each number x_new, compute (w(x_new)). If (w(x_new)) > =(w(x(i-1))), then 
x(i) = x_new, else (w(x_new)/ w(x(i-1)))>rand, then x(i) = x_new, else x(i) = x(i-1). Sum 
(f(x(i))) for all i and divide by N to get the value of the integral.
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