Problem 1.
a.

C: H: O: $\mathrm{N}=47.60 \% / 12: 7.33 \% / 1:(1-47.60 \%-7.30 \%-7.33 \%-3.00 \%) / 16: 7.30 \% / 14=1: 1.85: 0.55$: 0.13

Therefore, the elemental composition for the ash-free biomass is $\mathrm{CH}_{1.85} \mathrm{O}_{0.55} \mathrm{~N}_{0.13}$.

Thus, the formula weight per C-atom is:
$1 * 12(\mathrm{~g} / \mathrm{mol})+1.85 * 1(\mathrm{~g} / \mathrm{mol})+0.55^{*} 16(\mathrm{~g} / \mathrm{mol})+0.13^{*} 14(\mathrm{~g} / \mathrm{mol})=24.5 \mathrm{~g} / \mathrm{mol}$.

Since ethane is the sole carbon source, from the conservation of C-atom, we know
$\mathrm{Y}_{\mathrm{sx}}=$ moles of biomass(x)/moles of ethane(s)
$=$
$\left[22.8 \frac{\mathrm{~g} \text { dry weight }}{\text { mole ethane }}\right] \times\left[(1-3 \%) \frac{\mathrm{g} \text { biomass }}{\mathrm{g} \text { dry weight }}\right] \div\left[24.5 \frac{\mathrm{~g} \text { biomass }}{\text { mol biomass }}\right] \times \frac{1 \text { mol ethane }}{2 \mathrm{C}-\text { mole ethane }}$ $=0.451$ (C-mole biomass/C-mol ethane)

b.

If assuming that $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}} \mathrm{N}_{\mathrm{c}}$ are the only metabolic products, then the overall metabolic reaction is

$$
0.5 \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Y}_{\mathrm{so}} \mathrm{O}_{2}+\mathrm{Y}_{\mathrm{sn}} \mathrm{NH}_{3} \rightarrow \mathrm{Y}_{\mathrm{sx}} \mathrm{CH}_{1.85} \mathrm{O}_{0.55} \mathrm{~N}_{0.13}+\mathrm{Y}_{\mathrm{sc}} \mathrm{CO}_{2}+\mathrm{Y}_{\mathrm{sw}} \mathrm{H}_{2} \mathrm{O}
$$

From a), we already got $\mathrm{Y}_{\mathrm{sx}}=0.451$.
Use mass balance conditions on each atom:
C: $0.5 * 2=Y_{\text {sx }}+Y_{\text {sc }}$
$\mathrm{N}: \mathrm{Y}_{\mathrm{sn}}=\mathrm{Y}_{\mathrm{sx}} * 0.13$
H: $0.5 * 6+\mathrm{Y}_{\mathrm{sn}} * 3=\mathrm{Y}_{\mathrm{sx}} * 1.85+\mathrm{Y}_{\mathrm{sw}} * 2$
O: $\mathrm{Y}_{\mathrm{so}} * 2=\mathrm{Y}_{\mathrm{sx}} * 0.55+\mathrm{Y}_{\mathrm{sc}} * 2+\mathrm{Y}_{\mathrm{sw}}$

After solving this set of linear equations, we finally get
$\mathrm{Y}_{\mathrm{sc}}=0.549$ ($\mathrm{mol} \mathrm{CO}_{2} / \mathrm{C}-\mathrm{mol}$ ethane),
$\mathrm{Y}_{\mathrm{sn}}=0.0589\left(\mathrm{~mol} \mathrm{NH}_{3} / \mathrm{C}-\mathrm{mol}\right.$ ethane $)$,
$\mathrm{Y}_{\mathrm{sw}}=1.17$ ($\mathrm{mol} \mathrm{H}_{2} \mathrm{O} / \mathrm{C}-\mathrm{mol}$ ethane),
$\mathrm{Y}_{\mathrm{so}}=1.26\left(\mathrm{~mol} \mathrm{O}_{2} / \mathrm{C}-\mathrm{mol}\right.$ ethane $)$

Therefore, the full stoichiometric equation for the growth process

$$
0.5 \mathrm{C}_{2} \mathrm{H}_{6}+1.26 \mathrm{O}_{2}+0.0589 \mathrm{NH}_{3} \rightarrow 0.451 \mathrm{CH}_{1.85} \mathrm{O}_{0.55} \mathrm{~N}_{0.13}+0.549 \mathrm{CO}_{2}+1.17 \mathrm{H}_{2} \mathrm{O}
$$

The oxygen consumption is
$\mathrm{Y}_{\mathrm{xo}}=\mathrm{Y}_{\mathrm{so}} / \mathrm{Y}_{\mathrm{sx}}=1.26 / 0.451=2.79$ ($\mathrm{mol} \mathrm{O} 2 / \mathrm{C}-\mathrm{mol}$ biomass)
Then we can determine the heat evolved per kilogram dry weight from the enthalpy of combustion data:
$\mathrm{Q}=0.5 * \Delta \mathrm{H}_{\text {comb }}($ ethane $)+0.0589 * \Delta \mathrm{H}_{\text {comb }}\left(\mathrm{NH}_{3}\right)-0.451 * \Delta \mathrm{H}_{\text {comb }}$ (biomass)
$=-(0.5 * 1560 \mathrm{~kJ} / \mathrm{mol}+0.0589 * 383 \mathrm{~kJ} / \mathrm{mol}-19(\mathrm{~kJ} / \mathrm{g}$ dry weight)
$\div\left[(1-3 \%) \frac{\mathrm{g} \text { biomass }}{\mathrm{g} \text { dry weight }}\right] \times\left[24.5 \frac{\mathrm{~g} \text { biomass }}{\mathrm{C}-\text { mol biomass }}\right] \div \frac{1 \mathrm{C}-\text { mol ethane }}{0.451 \mathrm{C}-\text { mol biomass }}$
$=-586 \mathrm{~kJ} / \mathrm{c}-\mathrm{mol}$ ethane.
Then convert back again to per kilo dry weight
$\mathrm{Q}=$
$-586 \frac{\mathrm{~kJ}}{\mathrm{c}-\text { mol ethane }} \times\left[(1-3 \%) \frac{\mathrm{g} \text { biomass }}{\mathrm{g} \text { dry weight }}\right] \div\left[24.5 \frac{\mathrm{~g} \text { biomass }}{\mathrm{C}-\text { mol biomass }}\right] \times \frac{1 \mathrm{C}-\text { mol ethane }}{0.451 \mathrm{C}-\text { mol biomass }} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}$
$=-51.5(\mathrm{MJ} / \mathrm{kg}$ dry weight $)$

Problem 2.
For the reaction, $2 \mathrm{NO}+\mathrm{O}_{2} \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NO}_{2}$, it is not possible for the apparent activation energy to be negative, or equivalently, the rate constant decreases as T increases. We are asked to write down the elementary steps which include an NO_{3} species as an intermediate to explain this strange behavior.
A possible mechanism:

$$
\begin{gathered}
\mathrm{NO}+\mathrm{O}_{2} \xrightarrow{\mathrm{k}_{1}} \mathrm{NO}_{3} \\
\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{-1}} \mathrm{NO}+\mathrm{O}_{2} \\
\mathrm{NO}_{3}+\mathrm{NO} \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NO}_{2}
\end{gathered}
$$

So the reaction rates: $\mathrm{r}_{1}=\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right], \mathrm{r}_{-1}=\mathrm{k}_{-1}\left[\mathrm{NO}_{3}\right], \mathrm{r}_{2}=\mathrm{k}_{2}\left[\mathrm{NO}_{3}\right][\mathrm{NO}]$
If using PSSH for the intermediate NO_{3}, we have

$$
\frac{\mathrm{d}\left[\mathrm{NO}_{3}\right]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]-\mathrm{k}_{-1}\left[\mathrm{NO}_{3}\right]-\mathrm{k}_{2}\left[\mathrm{NO}_{3}\right][\mathrm{NO}]=0
$$

From this we can obtain $\left[\mathrm{NO}_{3}\right]=\frac{\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]}{\mathrm{k}_{-1}+\mathrm{k}_{2}[\mathrm{NO}]}$
Thus

$$
\begin{aligned}
\mathrm{r}_{\mathrm{NO}} & =-\frac{\mathrm{d}[\mathrm{NO}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]+\mathrm{k}_{-1}\left[\mathrm{NO}_{3}\right]-\mathrm{k}_{2}\left[\mathrm{NO}_{3}\right][\mathrm{NO}] \\
& =-\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]+\left(\mathrm{k}_{-1}-\mathrm{k}_{2}[\mathrm{NO}]\right) \frac{\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]}{\mathrm{k}_{-1}+\mathrm{k}_{2}[\mathrm{NO}]} \\
& =-\frac{2 \mathrm{k}_{1} \mathrm{k}_{2}\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}{\mathrm{k}_{-1}+\mathrm{k}_{2}[\mathrm{NO}]}
\end{aligned}
$$

In order to have third-order reaction kinetics as the form $\mathrm{r}_{\mathrm{NO}}=-\mathrm{k}_{\text {effectiveforward }}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$, we have to assume $\mathrm{k}_{-1} \gg \mathrm{k}_{2}[\mathrm{NO}]$, so that the overall reaction rate for NO is

$$
\mathrm{r}_{\mathrm{NO}}=-\frac{2 \mathrm{k}_{1} \mathrm{k}_{2}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}{\mathrm{k}_{-1}}
$$

where $\mathrm{k}_{\text {effective forward }}=\frac{2 \mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{-1}}$
It is therefore under the condition when $\mathrm{k}_{-1} \sim \mathrm{k}_{2}[\mathrm{NO}]$ or $\mathrm{k}_{-1} \ll \mathrm{k}_{2}[\mathrm{NO}]$ for r_{NO} to deviate significantly from the normal third-order expression above.
Also let's see what happens to the activation energy.

$$
\mathrm{E}_{\mathrm{a}, \text { overall }} \propto \ln \frac{2 \mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{-1}} \propto \mathrm{E}_{\mathrm{a} 1}-\mathrm{E}_{\mathrm{a},-1}+\mathrm{E}_{\mathrm{a} 2} \sim \Delta \mathrm{H}_{1, \mathrm{rxn}}+\mathrm{E}_{\mathrm{a} 2}
$$

If $E_{a 1}+E_{a 2}-E_{a,-1} \sim \Delta H_{1, r x n}+E_{a 2}<0$, then we can have a negative apparent activation energy, for
example, if elementary step 1 has a significantly negative $\Delta \mathrm{H}_{1, \mathrm{rxn}}$, so as long as $\mathrm{E}_{\mathrm{a} 2}$ is not too high the overall process will have a negative $\mathrm{E}_{\mathrm{a} \text {, overall }}$.

For the reverse reaction of the overall reaction, including the reverse reaction for the second elementary step, i.e.

$$
\begin{gathered}
\mathrm{NO}+\mathrm{O}_{2} \xrightarrow{\mathrm{k}_{1}} \mathrm{NO}_{3} \\
\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{-1}} \mathrm{NO}+\mathrm{O}_{2} \\
\mathrm{NO}_{3}+\mathrm{NO} \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NO}_{2} \\
2 \mathrm{NO}_{2} \xrightarrow{\mathrm{k}_{2}} \mathrm{NO}_{3}+\mathrm{NO}
\end{gathered}
$$

and still using PSSH on the intermediate NO_{3}

$$
\frac{\mathrm{d}\left[\mathrm{NO}_{3}\right]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]-\mathrm{k}_{-1}\left[\mathrm{NO}_{3}\right]-\mathrm{k}_{2}\left[\mathrm{NO}_{3}\right][\mathrm{NO}]+\mathrm{k}_{-2}\left[\mathrm{NO}_{2}\right]^{2}=0
$$

we can have the intermediate concentration:

$$
\left[\mathrm{NO}_{3}\right]=\frac{\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]+\mathrm{k}_{-2}\left[\mathrm{NO}_{2}\right]^{2}}{\mathrm{k}_{-1}+\mathrm{k}_{2}[\mathrm{NO}]}
$$

Then in this case, the overall reaction rate is

$$
\begin{aligned}
\mathrm{r}_{\mathrm{NO}} & =-\frac{\mathrm{d}[\mathrm{NO}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]+\mathrm{k}_{-1}\left[\mathrm{NO}_{3}\right]-\mathrm{k}_{2}\left[\mathrm{NO}_{3}\right][\mathrm{NO}]+\mathrm{k}_{-2}\left[\mathrm{NO}_{2}\right]^{2} \\
& =-\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]+\left(\mathrm{k}_{-1}-\mathrm{k}_{2}[\mathrm{NO}]\right) \frac{\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]+\mathrm{k}_{-2}\left[\mathrm{NO}_{2}\right]^{2}}{\mathrm{k}_{-1}+\mathrm{k}_{2}[\mathrm{NO}]}+\mathrm{k}_{-2}\left[\mathrm{NO}_{2}\right]^{2} \\
& =\frac{2\left(\mathrm{k}_{-1} \mathrm{k}_{-2}\left[\mathrm{NO}_{2}\right]^{2}-\mathrm{k}_{1} \mathrm{k}_{2}\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right)\right.}{\mathrm{k}_{-1}+\mathrm{k}_{2}[\mathrm{NO}]}
\end{aligned}
$$

Again, if $\mathrm{k}_{2}[\mathrm{NO}] \ll \mathrm{k}_{-1}$, then
$\mathrm{r}_{\mathrm{NO}}=2 \mathrm{k}_{-2}[\mathrm{NO} 2]^{2}-2 \mathrm{k}_{1} \mathrm{k}_{2} / \mathrm{k}_{-1}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
Notice that the second term is what we got before for the forward reaction, i.e.
$\mathrm{k}_{\text {forward }}=2 \mathrm{k}_{1} \mathrm{k}_{2} / \mathrm{k}_{-1}$
The first term gives the effective rate constant for the reverse process:
$\mathrm{k}_{\text {reverse }}=2 \mathrm{k}_{-2}$
Note that $\mathrm{k}_{\text {forward }} / \mathrm{k}_{\text {reverse }}=\mathrm{k}_{1} \mathrm{k}_{2} / \mathrm{k}_{-1} \mathrm{k}_{-2}=\mathrm{K}_{\mathrm{c} 1} \mathrm{~K}_{\mathrm{c} 2}=\mathrm{K}_{\mathrm{c}, \text { overall }}$ where K_{c} 's are equilibrium constants.

Prob. 3
a. For the reactions

$$
\mathrm{E}-\mathrm{S} \xrightarrow{\mathrm{k}_{2}} \mathrm{P}+\mathrm{E}
$$

We can write down

$$
\begin{gathered}
\frac{\mathrm{d}[\mathrm{~S}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~S}][\mathrm{E}]+\mathrm{k}_{-1}[\mathrm{E}-\mathrm{S}] \\
\frac{\mathrm{d}[\mathrm{E}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~S}][\mathrm{E}]+\mathrm{k}_{-1}[\mathrm{E}-\mathrm{S}]+\mathrm{k}_{2}[\mathrm{E}-\mathrm{S}] \\
\frac{\mathrm{d}[\mathrm{E}-\mathrm{S}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{~S}][\mathrm{E}]-\mathrm{k}_{-1}[\mathrm{E}-\mathrm{S}]-\mathrm{k}_{2}[\mathrm{E}-\mathrm{S}] \\
\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}=\mathrm{k}_{2}[\mathrm{E}-\mathrm{S}]
\end{gathered}
$$

With law of mass action on enzyme $[\mathrm{E}]+[\mathrm{E}-\mathrm{S}]=[\mathrm{E}]_{0},[\mathrm{~S}]+[\mathrm{P}]+[\mathrm{E}-\mathrm{S}]=[\mathrm{S}]_{0},[\mathrm{P}]_{(\mathrm{t}=0}=0$,
$[S]_{(t-0)}=[S]_{0},[E]_{(t-0)}=[E]_{0}$, and $k_{-1}=\mathrm{k}_{1} / \mathrm{K}_{\text {eq }}, 1$
b.

```
function [t,conc] = odehw2_prob3(k1, k2, keq1, tmax)
```

```
param = [k1,k2,keq1];
```

\%initial concentrations
\%conc0 = ([S], [ES], [E], [P])
conc0 $=$ [0.01, $0,1 \mathrm{e}-6,0]$;
\%use ode15s at the function derivhw2
\%t is the time vector output
\%conc is the 4 column matrix solution containing the concentrations of
\%[S], [ES], [E], [P]
options = odeset('AbsTol', 1e-9, 'RelTol', 1e-6);
[t,conc] = ode15s(@derivhw2_prob3, [0; tmax],conc0,options, param);
\%this is the function inputed into ode15s
function derivs = derivhw2_prob3(t, conc, param)
\%extract constants
k1 = param(1);
k2 = param(2);
keq1 $=\operatorname{param}(3)$;
\%This is the order of the variables in the concentration vector

```
%concS = [S] in M
%concES = [ES] in M
%concE = [E] in M
%concP = [P] in M
%switch from list of f's to actual names for ease of formulation of
concS = conc(1);
concES = conc(2);
concE = conc(3);
concP = conc(4);
%defining the rate equations
dconcSdt = -k1*concS*concE + (k1/keq1)*concES;
dconcEdt = -k1*concE*concS + k2*concES + (k1/keq1)*concES;
dconcESdt = k1*concE*concS - k2*concES - (k1/keq1)*concES;
dconcPdt = k2*concES;
%put derivative results back in column vector format for MATLAB
derivs = [dconcSdt; dconcESdt; dconcEdt; dconcPdt];
return;
```

c. Using this pseudo-steady approximation on intermediate species ES,

$$
\frac{\mathrm{d}[\mathrm{E}-\mathrm{S}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{~S}][\mathrm{E}]-\mathrm{k}_{-1}[\mathrm{E}-\mathrm{S}]-\mathrm{k}_{2}[\mathrm{E}-\mathrm{S}]=0
$$

we know

$$
[\mathrm{E}-\mathrm{S}]=\frac{\mathrm{k}_{1}[\mathrm{~S}][\mathrm{E}]}{\mathrm{k}_{-1}+\mathrm{k}_{2}}
$$

Using mass balance condition $[\mathrm{E}]+[\mathrm{E}-\mathrm{S}]=[\mathrm{E}]_{0}$
We know

$$
[\mathrm{E}-\mathrm{S}]=\frac{[\mathrm{E}]_{0}}{1+\frac{\mathrm{k}_{-1}+\mathrm{k}_{2}}{\mathrm{k}_{1}[\mathrm{~S}]}}
$$

Therefore the reaction rate

$$
-\mathrm{r}_{\mathrm{S}}=\frac{\mathrm{d}[\mathrm{~S}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}=-\mathrm{k}_{2}[\mathrm{E}-\mathrm{S}]=-\mathrm{k}_{2}[\mathrm{E}]_{0} \frac{[\mathrm{~S}]}{[\mathrm{S}]+\frac{\mathrm{k}_{-1}+\mathrm{k}_{2}}{\mathrm{k}_{1}}}=-\frac{V_{\max }[\mathrm{S}]}{[\mathrm{S}]+\mathrm{K}_{\mathrm{m}}}
$$

where $K_{m}=\left(k_{-1}+k_{2}\right) / k_{1}$ and $V_{\max }=k_{2}[E]_{0}$.
d. In the limit $[\mathrm{S}] \gg \mathrm{K}_{\mathrm{m}}$, from

$$
\frac{\mathrm{d}[\mathrm{~S}]}{\mathrm{dt}}=-\frac{V_{\max }[\mathrm{S}]}{[\mathrm{S}]+\mathrm{K}_{\mathrm{m}}} \approx-V_{\max }
$$

In the limit $[\mathrm{S}] \ll \mathrm{K}_{\mathrm{m}}$, from

$$
\frac{\mathrm{d}[\mathrm{~S}]}{\mathrm{dt}}=-\frac{V_{\max }[\mathrm{S}]}{[\mathrm{S}]+\mathrm{K}_{\mathrm{m}}} \approx-\frac{V_{\max }[\mathrm{S}]}{\mathrm{K}_{\mathrm{m}}}
$$

e.

Consider the conditions: $\mathrm{k}_{1}=10^{9}$ liter $/ \mathrm{mole}-\mathrm{s}, \mathrm{k}_{2}=1 \mathrm{~s}^{-1}, \mathrm{~K}_{\mathrm{eq}, 1}=1$ liter $/ \mathrm{mole},[\mathrm{E}]_{0}=10^{-6} \mathrm{M},[\mathrm{S}]_{0}=0.01$ M.

We know that now $\mathrm{K}_{\mathrm{m}}=\left(\mathrm{k}_{-1}+\mathrm{k}_{2}\right) / \mathrm{k}_{1}=\mathrm{k}_{2} / \mathrm{k}_{1}+1 / \mathrm{K}_{\text {eq }, 1} \sim 1 \mathrm{M},[\mathrm{S}]_{0}=0.01 \mathrm{M}$, therefore, $[\mathrm{S}]_{0} \ll \mathrm{~K}_{\mathrm{m}}$
since $[\mathrm{S}]$ is decreasing monotonically, $[\mathrm{S}] \ll \mathrm{K}_{\mathrm{m}}$ is always correct.
So now we can use the result from d)

$$
\frac{\mathrm{d}[\mathrm{~S}]}{\mathrm{dt}}=-\frac{V_{\max }[\mathrm{S}]}{\mathrm{K}_{\mathrm{m}}}
$$

This gives an exponential function for $[\mathrm{S}](\mathrm{t})$

$$
[\mathrm{S}](\mathrm{t})=[\mathrm{S}](t=0) \exp \left(-\frac{V_{\max }}{\mathrm{K}_{\mathrm{m}}} \mathrm{t}\right)=[\mathrm{S}]_{0} \exp \left(-\frac{V_{\max }}{\mathrm{K}_{\mathrm{m}}} \mathrm{t}\right)
$$

While for [ES],

$$
[\mathrm{ES}](\mathrm{t})=\frac{[\mathrm{E}]_{0}}{1+\frac{\mathrm{k}_{\mathrm{M}}}{[\mathrm{~S}]}} \approx \frac{[\mathrm{E}]_{0}}{\mathrm{k}_{\mathrm{M}}}[\mathrm{~S}]=\frac{[\mathrm{E}]_{0}}{\mathrm{k}_{\mathrm{M}}}[\mathrm{~S}]_{0} \exp \left(-\frac{V_{\max }}{\mathrm{K}_{\mathrm{m}}} \mathrm{t}\right)
$$

And for [P]

$$
[\mathrm{P}](\mathrm{t})=[\mathrm{S}]_{0}-[\mathrm{ES}](\mathrm{t})-[\mathrm{S}](\mathrm{t}) \approx[\mathrm{S}]_{0}\left[1-\exp \left(-\frac{V_{\max }}{\mathrm{K}_{\mathrm{m}}} \mathrm{t}\right)\right]
$$

Use matlab to solve the following non-linear ODE IVP:

$$
\begin{gathered}
\frac{\mathrm{d}[\mathrm{~S}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~S}][\mathrm{E}]+\frac{\mathrm{k}_{1}}{\mathrm{~K}_{\mathrm{eq}, 1}}\left([\mathrm{E}]_{0}-[\mathrm{E}]\right) \\
\frac{\mathrm{d}[\mathrm{E}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~S}][\mathrm{E}]+\left(\frac{\mathrm{k}_{1}}{\mathrm{~K}_{\mathrm{eq}, 1}}+\mathrm{k}_{2}\right)\left([\mathrm{E}]_{0}-[\mathrm{E}]\right) \\
\mathrm{r}=\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}=\mathrm{k}_{2}[\mathrm{E}-\mathrm{S}]=\mathrm{k}_{2}\left([\mathrm{E}]_{0}-[\mathrm{E}]\right)
\end{gathered}
$$

with the initial conditions $[\mathrm{S}]_{\mathrm{t}=0}=[\mathrm{S}]_{0}=0.01 \mathrm{M}, \mathrm{k}_{1}=10^{9}$ liter $/ \mathrm{mole}-\mathrm{s}, \mathrm{k}_{2}=1 \mathrm{~s}^{-1}, \mathrm{~K}_{\mathrm{eq}, 1}=1$ liter $/ \mathrm{mole}$, and $[\mathrm{E}]_{0}=10^{-6} \mathrm{M}$. From $\mathrm{d}[\mathrm{ES}] / \mathrm{dt}=0$, we can determine the time to reach pseudo steady state is approximately $7 \times 10^{-9} \mathrm{sec}$, which is really really short. For this specific condition, pseudo steady state works very well. This may also be seen from a direct comparison of the analytical/full numerical solutions [ES](t) plots on a short time scale. [E-S] should rapidly rise from zero to the

PSSA value (on the order of 10^{-8} seconds). The only observable difference between the numerical and analytical solutions is this initial jump in [E-S] on the short time scale.

[P] $]$ (t)

$d[E S] / d t$ vs. t

