10.52 Mechanics of Fluids Spring 2006 Problem Set 1

Problem 1

If

$$\underline{\underline{\sigma}} = \begin{bmatrix} 2 & 4 & -6 \\ 4 & 2 & -6 \\ -6 & -6 & -15 \end{bmatrix}$$

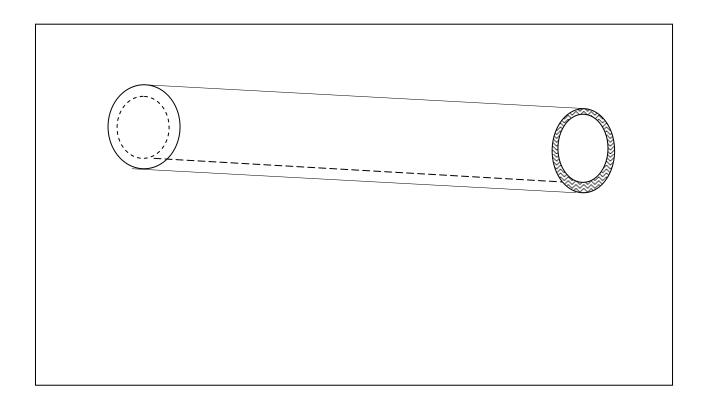
a) What are the principal values of $\underline{\sigma}$?

- b) What are the directions in which the principal stresses act?
- c) If a new coordinate frame (ξ, η, ζ) is erected such that the new axes are aligned with the directions of the principal axes, what are the relations:

 $\xi = \xi(x, y, z); \eta = \eta(x, y, z); \zeta = \zeta(x, y, z)$

Problem 2

If


$$\underline{\underline{\sigma}} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

Repeat Problem 1a-c

Problem 3

A thin-walled cylinder of inner radius R_i and thickness t (t/ $R_i <<1$) is closed at both ends. It contains a fluid with a constant stress tensor $\underline{\sigma} = -p_i \underline{\delta}$ and is surrounded by a fluid with a constant stress tensor $\underline{\sigma} = -p_o \underline{\delta}$. Body forces are negligible. Consider the special case in which $p = p_o$. However, a torque $\Im_o \underline{k}$ is applied to one end and $-\Im_o \underline{k}$ to the other end.

- a) Assume that the cylinder is very long and, for the region far removed from the ends, evaluate the stress tensor in terms of R_i , t, p_i , p_o etc. Employ cylindrical coordinates.
- b) Determine the magnitude and direction of the principal stresses.
- c) What is the magnitude of the maximum shear stress?

Repeat Parts (a), (b), and (c) of the preceding problem.