
Lecture 10. Stochastic Theory of Reaction Rates 


Notes by MIT Student (and MZB)
10.95 lecture on 2/25/09 

Model problem (1-D): reactants (at x=0) in state 1 randomly walk until they go over activation 

barrier(x=xA), then it goes directly to state 2 and the reaction happens. (Kramers Problem) 

 

In the limit of a continuous stochastic process, the probability density function P(x,t) (which is 

proportional to the concentration of non-interacting particles independently following the same stochastic 

dynamics) satisfies the Fokker-Planck Equation: 

In equilibrium in state 1(no escape, E>>kT): 
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(Note that a Boltzmann distribution must describe the equilibrium state of zero flux, since the particles re 

assumed to be non-interacting point particles .) For P(x,t), we can almost guess it would be as below: 

For the 1d Kramers Problem, we consider the following initial value problem 

which describes a particle released from  th

calculate conveniently, we put them  into D

e origin at t=o and diffusing in the energy landscape U(x). To 

imensionless form: 

Recall that the probability density function P can be interpreted as the concentration (mean number) of 

non-interacting random walkers starting at x=o  at t=o and arriving at 

The "first passage time" T is a random variable, whose value is the time when the stochastic process 

first achieves a certain condition, such as hitting a target set. In Kramers problem, this target is the 

activation barrier, and <T> = mean first passage time starting from the potential welll = inverse of the 

mean reaction rate. If we want complete information about fluctuations in the reaction rate (not just its 

mean), we need to solve for PDF (probability density function) f(t) for T. This can be conveniently 

calculated from the "survival probability" 5(t)= Probability the process has not hit the target set (here, 

the activation barrier) at x=xA up to time t. 
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k equation solve (l) with initial 

ition P=o on the target set. This 

describes an "absorbing boundary" that "eats" stochastic trajectories as soon as they reach it, leaving 

behind only trajectories that have "survived" and not yet hit the set. For the ld Kramers problem: 

5o we get: 


Consider (l)'s dimensionless form into another form for next step: 


We will solve this problem in more general form and apply it to Kramers problem in the next lecture. 
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=Probability (Escape Time > t) 

To obtain 5(t) for a general stochastic process, we solve the Fokker-Planc

condition localized on the starting point (2) subject to the boundary cond
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