
VIII. Phase Transformations 

Lecture 39: Reaction-limited Phase Separation 

MIT Student 

Last time we presented the classical Cahn-Hilliard theory for phase trans
formations in closed systems characterized by a conserved order parameter 
(concentration). In this lecture we adapt the model to electrochemical sys
tems by including Faradaic surface reactions. The resulting model describes 
evolution of a conserved parameter in an open system that is in contact 
with an infinite reservoir at fixed chemical potential. This model is a gener
alization of the Allen-Cahn equation which describes the evolution of non-
conserved order parameters during phase transformation. 

1	 Phase transformation during intercalation and 
adsorption 

The Cahn-Hilliard model, which was derived in the previous lecture, is: 

∂c 
= (

t 
∇ · Mc

∂
∇µ) 

(1) 
µ = µ̄(c) −∇ · K∇c 

where µ is a diffusional chemical potential for an inhomogeneous system. 
Two boundary conditions are imposed. The first is a variational boundary 
condition (see 2009 notes for derivation): 

 
n̂ · K∇c +  "γs

′ (c) = 0	 (2)

γs  is surface tension and may v

(

ary with concen

)

tration and orientation. Phys
ically, this boundary condition avoids discontinuity in bulk chemical poten
tial at the boundary by prohibiting gradients (bulk phase interface). True 
surface chemical potential should come from a separate surface contribution 
to free energy, which we have neglected so far. 
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The second boundary condition equates the flux across the boundary to 
a reaction rate: 

R = n̂ · F" = −n̂ · Mc∇µ (3)

Butler-Volmer is a logical choice for reaction rate kinetics: 

[ 
R = R e(1−α)eη/kT − e−αeη/kT 

0 

]
(4a) 

Recall that the variables in the Butler-Volmer equation are: 

 k0aαa1 −α

R0 = + (exchange current) 
γA 

η = ∆φ −∆φeq (overpotential) (4b) 
γA = activity coefficient of the transition state 

1 
= for excluded volume 

1 − c 

∆φ = φe − φ is the interfacial voltage, φ is the electrode potential, and φe 

is the electrolyte potential. According to our general theory of reactions 
in concentrated solutions, R should depend on both c and µ. But since µ 
depends on gradients in c, the reaction rate must also, which is different from 
classical chemical reaction kinetics. We now have a Butler-Volmer equation 
for an inhomogeneous system. 

Consider the Faradiac reaction in LiFePO4: 

Li +  
(s) → Li + e− + VLi(s) 

(5) 

Li(s) is lithium in the solid, and VLi(s) 
is a lithium vacancy in the solid. The 

diffusional chemical potential (see lecture 13) of lithium is defined using the 
Cahn-Hilliard formalism: 

µ = µ(Li(s)) − µ(VLi(s) 
) = kT  ln a = µ̄(c) −∇ · K∇c (6) 

The chemical potentials of Li+ and e− are: 

µ +
+ = µ(Li ) = kT  ln a+ + eφ 

(7) 
µ− = µ(e−) = − eφe 

If we ignore variations in the Li+ activity in the electrolyte (a+ = 1 ), then 
∆φ is the battery voltage (up to a constant) and µ+ + µ  = −e∆φ ≡ µext. −
µext is an “external chemical potential” that drives the reaction of Li+ +e−. 
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At equilibrium, the reaction does not proceed in either direction (zero 
net reaction rate). Thus µ = µ+ + µ  and∆ φ = ∆φeq. We can use this −
equilibrium condition to solve for the equilibrium interfacial voltage: 

µ = µ+ + µ  = kT ln a− + − e∆φeq 

kT ln a
∆ = + φeq  

− µ	 (8)
e 

When an external potential µext is applied, the system is displaced from 
equilibrium and the interfacial voltage becomes: 

kT ln a+ − (µ + µ ) kT ln a  µ
∆φ = +   − = + − ext (9) 

e e 

The resulting overpotential is: 

µ  µ
η = ∆φ − ∆ ext φeq = 

−
(10) 

e 

Thus by varying µext with an applied field, we can control the battery voltage 
and current. 

2	 Reaction-limited adsorption and phase transfor
mation 

Now we will use the inhomogeneous Butler-Volmer equation to develop a 
model for 2D surface adsorption and intercalation into quasi-2D crystals, as 
illustrated in figure 1. The following two assumptions are made: 

• Fast transport and no phase separation in depth (z) direction in a bulk 
crystal. 

• No transverse diffusion along surface directions (x, y).

Under these assumptions, the CH+reaction model reduces to: 

∂c 
= −R (c, µ, µext) (11)

∂t 

which is a nonlinear PDE for c, since µ = µ̄(c) − ∇· K∇c. Applying the 
symmetric Butler-Volmer hypothesis (α = 1/2) produces: 

( )    eη µ  µ
R(c, µ, µext) = 2R0(c, µ) sinh = 2R0(c, µ) sinh 

− ext 

2kT	

(

kT 
k

)

 
0
√ (12) 	aa

( ) = + 
R c, µ = k eµ/kT 

0 0(1 − c)
γA 

√
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Figure 1: The reaction-limited model is derived for a 2D or quasi-2D system 
and assumes no transverse surface diffusion in the (x, y) plane. 

This is a highly nonlinear second-order PDE, but takes a simpler form for 
small overpotentials (η = µ−µext 

e << kT ). By performing a Taylor expansion 
on sinh(x) and keeping only the leading terms, the approximation sinh(x) ≈ 
x may be made for small x. Equation 11 becomes: 

∂c R0(c, µ) 
(13)

∂t 
≈ (µ  

 ext 
kT

− µ) 

This equation describes reaction kinetics for small overpotentials in an in
homogeneous system. 

3 Reaction-limited spinodal decomposition 

Now let’s analyze spinodal decomposition in a system governed by Eq. 13. 
For simplicity, assume R0(c, µ)/kT = r0 = constant. The governing equa
tion is: 

∂c  
= r0 

(
µext − ḡ′(c) +  κ

∂
∇2c

)
(14)

t 

This is the Allen-Cahn equation with a forcing potential, and τ = 1 is the r
characteristic

0 

 reaction time to fill a site on the active surface (or channel). 
Let c(x, t) = c 0 + ν, where c ik

0 is a constant and ν = εe xest is a small 
perturbation. We want to find the amplification factor s in terms of the 
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(a) Adsorption/desorption of a surface 
monolayer. 

(b) A quasi-2D intercalation crystal with 
fast diffusion in the z direction approxi
mates LiF eP O4. 
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Figure 2: Linear stability of the forced Allen-Cahn equation as a function of 
wavenumber k. Instability occurs inside the spinodal points, where ḡ′′(c0) < 
0. 

wave number k to determine which frequencies will be amplified. Substitute 
c = c0 + ν into Eq. 14: 

∂(c0 + ν) 
= r0 

(  
µext − ḡ′(c0) − νḡ′′(c0) + κ ∇2(c0 + ν) (15)

∂t 

For a homogeneous system at equilibrium ḡ′(c0) = µ ext, and the

)

 equation 
simplifies to: 

∂ν  
= r0 −νḡ′′(c 2

0) +  κ∇ ν (16)
∂t 

Substituting ν = εeikxest, we obtain:

(

 

)

 
s = −r0 ḡ′′(c0) +  κk2 (17) 

which is plotted in figure 2. s is

(

 only positiv

)

e for values of c0 between 
the spinodal points, and the most unstable wavelength is k = 0. For a 
finite system of size L, only a discrete spectrum of k = 2πn , n  = 0, 1, 2, . . . L
are permitted. kmax = 2π 

L in a discrete system, and therefore λmax ∼ L. 
We expect to see phase separation into a few large domains on the order 
of the system size. However, keep in mind that the probability of finding 
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(a) c ∼ c0 inside spinodal (b) The initial stages of de- (c) Few large structures λ ∼ 
µext = µ̄(c0) held constant. composition. L. 

Figure 3: Evolution of Eq. 14, the forced Allen-Cahn equation. 

a long-wavelength perturbation decreases with increasing wavelength. A 
numerical simulation of Eq. 14 is presented in figure 3. In contrast to 
Cahn-Hilliard evolution, there is no characteristic wavelength apparent in 
the microstructure. 
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