10.675 LECTURE 16

RICK RAJTER

1. Today

MD and Car-Parrinellow Summary of Localized BS vs Non-Localized MD Simulated Annealing CPMD

2. Localized: Advantages

Can treat only one molecule Integration is expensive Can incorporate exchange No correlation methods Can or don't have to use pseudopotentials

3. Localized: Disadvantages

Can't use HF forces (expensive otherwise) FFT (finite fourier transform) is harder More doesn't lead to better results BSSE issue

4. Non-localized: Advantages

Use HF forces (cheap) Easier Integration FFT easy No Exchange terms No Correlation Methods More accurate w/more computation BSSE is not an issue

5. Non-localized: Disadvantages

Must treat empty space Must use pseudo potentials

Date: Fall 2004.

RICK RAJTER

6. MD - MOLECULAR DYNAMICS

Integrate numerically Newton's equations of motion along a trajectory.

1) Choose system and initial temperature and positions

2) Computer other forces

3) Integrate Newton's equations of motion using finite differences and store important properties

4) Analyze important properties

7. INTEGRATION METHODS

Velocity Verlet Leap Gear Choice of Δt is of extreme importance. Velocity Verlet Algorhythm $x_{k+1}(t_{\Delta}t) = x_k(t) + v_x(t)\Delta t + \frac{f_k(t)(\Delta t)^2}{2\mu_k}$ $v_{k+1}(t + \Delta t) = v_k(t) + \frac{f_k(t + \Delta t) + f_k(t)}{2\mu_k}\Delta t$ $E^{elec} \rightarrow V^{potential}, T^{nuclear}$

8. SIMULATED ANNEALING

Typically want 1fs for Δt Start out with high temperature and then "cool" slowly by decreasing T. Designed by Kirpatrick, Gelati, Vecchi (Science 220 671 1983) Optimizing highly non-linear complicated functions. Essentially, anneal slowly and thus lower the system to minimums.

9. CPMD

CP is the method MD is the method

10. LAGRANGIAN FORMULATION OF MECHANICS

$$\begin{split} &L = T(\dot{q}'s) - V(q's) \text{ Where T is KE, } \dot{q}'s \text{ are velocity, V is potential, } q's \text{ are position} \\ &\text{Lagrange's equations of motion} \\ &\frac{dt}{dt}(\frac{\delta L}{\delta q_i}) - \frac{\delta L}{\delta q_i} = 0 \\ &\text{Combined with simulated annealing} \\ &L = \sum_i 1/2\mu_i \int dr |\Psi ki|^2 \text{ (which is a CP trick to add the fictitious mass.)} \\ &+ \sum_i \frac{1}{2}M\dot{R}_I^2 - E\{\Psi_{ki}\}\{R_I\} \\ &+ \sum \Lambda_{ij}(\int dr \Psi_{ki}^*(r)\Psi_k(r) - \delta_{ij}) \\ &\text{The last term ensure orthogonality.} \\ &\text{Solve for } \Psi_k \text{'s and R's simultaneously using simulated annealing.} \\ &\text{Main Issue: This approach assume BO approximation always} \\ &\Rightarrow \text{ No exchange between fictitious and nuclear DOF} \end{split}$$

11. Misc

$$\begin{split} \mu \ddot{\Psi}_i &= \frac{-\delta E}{\delta \Psi_i^*} + \sum_p \Lambda_{ip} \Psi_p \\ M_I \ddot{R}_I &= -\nabla_R E^{elec} \\ \text{Think of Characteristic frequencies of } \dot{\Psi} \text{ and } \dot{R} \\ \dot{\Psi} &: w_{ij} (\frac{2(\epsilon_j - \epsilon_i)}{\mu})^{\frac{1}{2}} \\ \epsilon_j - \epsilon_i \Rightarrow \text{Band Gap} \\ \Delta \quad 0.1 \text{ fs} \\ \approx 1010TH_z \\ \mu &= 300au \text{ for } E_g = 2.24eV \\ \dot{R}, \Omega \; 4000cm^{-1} \; 100TH_z \text{ Enough to practically prevent change} \\ \text{Method VERY problematic for metals.} \\ \text{CP Irony: No one actually used it for it's designed purpose! B} \end{split}$$

CP Irony: No one actually used it for it's designed purpose! BUT, heavily used for computing the dynamics of systems for which QM is needed to describe well.