10.675 LECTURE 2

RICK RAJTER

1. Last Lecture Review

\rightarrow Many Body PE surface.
\rightarrow Schrödinger's Equation (SE)
\rightarrow \# Dimensions

2. Important Concepts

\rightarrow Many Body PE surface.
\rightarrow Schrodinger's Equation.
\rightarrow \# Dimensions
3. Many Body SE

$$
H=\frac{-1}{2} \sum_{i}^{N} \nabla_{i}^{2}-\sum_{i}^{N} \sum_{j}^{M} \frac{Z_{k}}{\overrightarrow{r_{i}}-\overrightarrow{R_{k}}}+\sum_{i}^{N} \sum_{i<j}^{N} \frac{1}{\overrightarrow{r_{i}} \text { vecr }_{j}}
$$

3N-6 Degrees of Freedom (DOF) in Non-Linear Case
3N-5 DOF for linear.
Each Molecule moves in the directions, hence 3N. In non-linear, substract 3 rotation and 3 translation (-6). In linear, substract 3 translation and 2 rotation (-5).
4. Today
$\rightarrow \mathrm{QM}$ and Atomic Orbitals
\rightarrow Permutation $\hat{P}_{i} j$ and Pauli Principle
\rightarrow Spin Orbitals
\rightarrow Valence band theory and molecular

5. Born Oppenheimer approximation

Theory that the electrons relax far faster than the protons. Thus, we can decouple nuclear-nuclear interaction terms from the electron terms.

[^0]6. Hydrogen Atom
$$
H \phi_{i}(r)=E_{i} \phi_{i}(r)
$$
$\mathrm{H} \rightarrow$ Hamiltonian
$\phi_{i} \rightarrow$ "Atomic" orbital
$r \rightarrow$ position vector
We can solve for the hydrogen wave function explicitly
$$
\phi_{n l m}(\vec{r})=R_{n l} Y_{l}^{m}(\phi, \theta)
$$

NOTE: the solution neglects or doesn't include the effects of spin.

7. Spin

Electrons have an intrinsic spin $+/-\frac{1}{2}$ or 11 . This spin is a consequence of the SE in its relativistic formulation, i.e. the Dirac equation. Thus, degeneracy of the atomic orbitals exists.
Let ω be the spin coordinate. $\vec{x}=(\vec{r}, \omega)$.
$\Psi=$ Total wave functions of the many body N electron system
$=\Psi\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}} \ldots \overrightarrow{x_{N}}\right)$

8. Pauli Principle

Ψ must be anti symmetric with respect to exchange.
$\hat{P}_{i} j \rightarrow$ Permutation operator, which exchanges electron i with j . $\hat{P}_{12} \Psi\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}\right)=\Psi\left(\overrightarrow{x_{2}}, \overrightarrow{x_{1}}, \overrightarrow{x_{3}}\right)=-\Psi\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}\right)$

9. Helium Atom

Introduce spin orbital concept $\chi(\vec{x})$ where $\vec{x}=(\vec{r}, \vec{\omega})$
The ground state wave function is the lowest state. $\Psi_{0}=\chi_{\alpha}\left(\vec{x}_{1}\right) \chi_{\beta}\left(\vec{x}_{2}\right)$ which is our "trial" wavefunction.

10. Slater Determinant

$\Psi_{0}=\chi_{\alpha}\left(\vec{x}_{1}\right) \chi_{\beta}\left(\vec{x}_{2}\right) \rightarrow$ Not anti-symmetric, so it's a poor trial wave function. Try this instead.
$\Psi_{0}=\frac{1}{\sqrt{2}}\left(\chi_{\alpha}\left(\vec{x}_{1}\right) \chi_{\beta}\left(\vec{x}_{2}\right)-\chi_{\alpha}\left(\vec{x}_{2}\right) \chi_{\beta}\left(\vec{x}_{1}\right)\right)$
Which is anti-symmetric AND coupled.
A more convenient format is a slater determinant.

$$
\Psi=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\chi_{\alpha}\left(\vec{x}_{1}\right) & \chi_{\alpha}\left(\vec{x}_{2}\right) \\
\chi_{\beta}\left(\vec{x}_{1}\right) & \chi_{\beta}\left(\vec{x}_{2}\right)
\end{array}\right|
$$

11. Spatial Functions

$\phi\left(r_{1}\right) \phi\left(r_{2}\right)$ abbreviate as $\phi(1) \phi(2)$
Spin Function α or β.
$\alpha(1) \alpha(2)$ and $\beta(1) \beta(2)$ are symmetric
$\alpha(1) \beta(2)$ and $\beta(1) \alpha(2)$ violates indistinguishability. Implies we have an independent measure of spins.

12. Combined Spin and Spatial Functions

Now that we have the electronic and spatial wave functions, we combine to get a complete trial wave function for helium.

$$
\Psi\left(\overrightarrow{\chi_{1}} \overrightarrow{\chi_{2}}\right)=\frac{1}{\sqrt{2}} \phi(1) \phi(2)[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
$$

Note that $\int \phi(1) \phi(1) d r=\int \phi(2) \phi(2) d r=1$ from the overlap integral $S=\int \phi_{a} \phi_{b} d(\vec{r})$

13. Hydrogen Gas

Valence bond theory, so valence bond wave function.
Choose a trial wave function (Heiter and London).
$\Psi=\phi_{a}(1) \phi_{b}(2)$ or $\phi_{b}(1) \phi_{a}(2)$
So, we need to create an overall anti-symmetric wave function of both electronic and spatial wave functions.

$$
\Psi=\frac{1}{\sqrt{2+2 S^{2}}}\left[\phi_{a}(1) \phi_{b}(2)+\phi_{b}(1) \phi_{a}(2)\right] \frac{1}{\sqrt{2}} *\left(\chi_{\alpha}\left(\vec{x}_{1}\right) \chi_{\beta}\left(\vec{x}_{2}\right)-\chi_{\alpha}\left(\vec{x}_{2}\right) \chi_{\beta}\left(\vec{x}_{1}\right)\right)
$$

which is overall anti-symmetric (both spatially and electronically).

14. Hydrogen Hamiltonian

The complete Hamiltonian is as follows.

$$
H=\frac{-1}{2} \nabla_{1}^{2}-\frac{-1}{2} \nabla_{2}^{2}-\frac{1}{\overrightarrow{r_{1}}-\overrightarrow{R_{a}}}-\frac{1}{\overrightarrow{r_{2}}-\overrightarrow{R_{b}}}+\frac{1}{\overrightarrow{r_{1}}-\overrightarrow{r_{2}}}-\frac{1}{\overrightarrow{r_{2}}-\overrightarrow{R_{a}}}-\frac{1}{\overrightarrow{r_{1}}-\overrightarrow{R_{b}}}
$$

Where \vec{r} denotes electron position vector, \vec{R} denotes nucleus position vector.

15. Perturbation Theory

Summary on pg 68 of S\&O
Dissociation Energy
H_{2} System
Calculated $\mathrm{De}=3.15 \mathrm{eV} \mathrm{Re}=0.87 \AA$
Experimental $\mathrm{De}=4.75 \mathrm{Re}=0.741 \AA$
Major approximations
\rightarrow Form of the trial wavefunction
\rightarrow BO approximation
\rightarrow Perturbation Theory (how we solve it)

16. Molecular Orbital Approach

Trial Wave Function

$$
\Psi=\frac{1}{\sqrt{2+2 S^{2}}}\left[\left(\phi_{a}+\phi_{b}\right)(1)\left(\phi_{a}+\phi_{b}\right)(2)\right] \frac{1}{\sqrt{2}} *(\alpha(1) \beta(2)-\beta(1) \alpha(2))
$$

The spatial orbital section is symmetric, and the electronic orbitals are antisymmetric. A symmetric function times a antisymmetric function leads to an overall anti symmetric function.
This is essentially a linear combination of spatial orbitals $\Psi(1)$ and $\Psi(2)$.

If we multiply out the spatial terms, we get the following.

$$
\phi_{a}(1) \phi_{a}(2)+\phi_{b}(1) \phi_{b}(2)+\phi_{a}(1) \phi_{a}(2)+\phi_{b}(1) \phi_{a}(2)
$$

The first two terms are "ionic" because both electrons are centered on 1 atom. The 2nd two terms are "covalent", as the electrons are shared. Unfortunately, if we maintain this balance, this implies that ionic-covalent characteristics should occur $50 / 50$. This is obviously not the case. Thus, a fudge factor λ can be used to reduce the ionic content of the wave function. Then we can solve variationally. Typically, λ is set to 0.26 .

[^0]: Date: Fall 2004.

