10.675 LECTURE 3

RICK RAJTER

1. Today

\rightarrow Hartree Theory and Self Consistent Solutions
\rightarrow Slater Determinant
\rightarrow Hartree-Fock Theory
Reminder, Tuesday's Evening Class 7-8:30 rm 1-115

2. Concepts

\rightarrow Mean Field Theory \rightarrow Self Consistent Solutions

3. Quick Review

$H \Psi_{0}=E_{i} \Psi_{0}$ for the ground state system. The full hamiltonian is below.

$$
H=\frac{-1}{2} \sum_{i}^{N} \nabla_{i}^{2}-\sum_{i}^{N} \sum_{j}^{M} \frac{Z_{k}}{v} e c r_{i}-\overrightarrow{R_{k}}+\sum_{i}^{N} \sum_{i<j}^{N} \frac{1}{\overrightarrow{r_{i}}-\overrightarrow{r_{j}}}
$$

The difficulty arises in the last term, because it's not separable.

4. Hartree Theory 1928

Trial Wave Function $\chi_{1}\left(\overrightarrow{x_{1}}\right) \chi_{2}\left(\overrightarrow{x_{2}}\right)$
Go from a many bodied problem to a single electron problem.
$\rho_{j} \rightarrow$ electron density of j .
$\rho_{j}(\vec{r})=\Psi_{j}^{*}(\vec{r}) \Psi_{j}(\vec{r})$
Sooo...

$$
\sum_{i}^{N} \sum_{i<j}^{N} \frac{1}{\overrightarrow{r_{i}}-\overrightarrow{r_{j}}} \rightarrow \sum_{j=2}^{N} \frac{\chi_{1}\left(\overrightarrow{x_{1}}\right) \chi_{2}\left(\overrightarrow{x_{2}}\right)}{\left|\overrightarrow{r_{i}}-\overrightarrow{r_{j}}\right|}
$$

and that is the "Mean Field Term."

$$
H_{1}^{\text {Hartree }}=\frac{-1}{2} \sum_{i}^{N} \nabla_{i}^{2}-\sum_{i}^{N} \sum_{j}^{M} \frac{Z_{k}}{\overrightarrow{r_{i}}-\overrightarrow{R_{k}}}+\sum_{j=2}^{N} \frac{\rho\left(\overrightarrow{r_{i}}\right)}{\left|\overrightarrow{r_{i}}-\overrightarrow{r_{j}}\right|} d r_{i}
$$

Summed up from $H_{1}^{\text {Hartree }}+H_{2}^{\text {Hartree }} \ldots+H_{N}^{\text {Hartree }}$ for each electron. Thus, we solve $H_{1}^{H a r} \chi_{1}^{\text {Har }}(1)=\epsilon_{1} \chi_{1}^{\text {Har }}(1)$
Example

Date: Fall 2004.

```
Initially
\(\chi_{1}(1) \chi_{2}(2) \chi_{3}(3)\)
\(\downarrow\)
\(\chi_{1}^{\prime}(1) \chi_{2}(2) \chi_{3}(3)\)
\(\downarrow\)
\(\chi_{1}^{\prime}(1) \chi_{2}^{\prime}(2) \chi_{3}(3)\)
\(\downarrow\)
\(\chi_{1}^{\prime}(1) \chi_{2}^{\prime}(2) \chi_{3}^{\prime}(3)\)
\(\downarrow\)
\(\chi_{1}^{\prime \prime}(1) \chi_{2}^{\prime}(2) \chi_{3}^{\prime}(3)\)
\(\downarrow\)
\(\chi_{1}^{\prime \prime}(1) \chi_{2}^{\prime \prime}(2) \chi_{3}^{\prime}(3)\)
\(\downarrow\)
Convergence!
```

The major problem left to deal with is the fact that $\chi_{1}\left(\overrightarrow{x_{1}}\right) \chi_{2}\left(\overrightarrow{x_{2}}\right)$ is symmetric in regards to exchange of electron positions. Thus, we need to make it anti-symmetric by converting via a slater determinant.
5. Slater Determinant

$$
\begin{aligned}
\Psi\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}\right) & =\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
\left.\chi_{i}\left(\overrightarrow{x_{1}}\right) \chi_{i}\left(\overrightarrow{x_{2}}\right)-\chi_{i}\left(\overrightarrow{x_{2}}\right) \chi_{i}\left(\overrightarrow{x_{1}}\right)\right] \\
& =\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\chi_{i}\left(\overrightarrow{x_{1}}\right) & \chi_{i}\left(\overrightarrow{x_{2}}\right) \\
\chi_{j}\left(\overrightarrow{x_{1}}\right) & \chi_{j}\left(\overrightarrow{x_{2}}\right)
\end{array}\right|
\end{array} .\right.
\end{aligned}
$$

The above is known as a "Slater" determinant.
Now, we want to expand this relationship for an N -electron system.

$$
\Psi\left(\overrightarrow{x_{1}} \overrightarrow{2_{2}} \overrightarrow{x_{3}} \ldots \overrightarrow{x_{N}}\right)=\frac{1}{\sqrt{N}}\left|\begin{array}{ccc}
\chi_{i}(1) & \chi_{j}(1) & \chi_{k}(1) \\
\chi_{i}(2) & \chi_{j}(2) & \chi_{k}(2) \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\chi_{i}(N) & \chi_{j}(N) & \chi_{k}(N)
\end{array}\right|
$$

with each spin being orthonormal!
$\int \chi_{i}^{*}(\vec{x}) \chi_{i} \vec{x} d x=\delta_{i j}$
6. Hartree + Slater Determinant
$H^{H f} \Psi_{o}=E_{o} \Psi$
Reorganizing via multiplying each side by Ψ_{*}
$E_{o}=\int \Psi_{o}^{*} H^{H f} \Psi_{o} d \overrightarrow{x_{1}} d \overrightarrow{x_{2}}$

$$
H^{H f}=\frac{-1}{2} \nabla_{i}^{2}-\sum_{k} \frac{Z_{k}}{\overrightarrow{r_{i}}-\overrightarrow{R_{k}}}+\frac{1}{\overrightarrow{r_{1}}-\overrightarrow{r_{2}}}
$$

where $\frac{1}{r_{1}-r_{2}}$ is often written $\frac{1}{r_{12}}$

$$
\begin{aligned}
E_{o} & =\sum_{a}^{N} \int d \overrightarrow{x_{1}} \chi_{a}^{*}\left(\overrightarrow{x_{1}}\right)\left[\frac{-1}{2} \nabla_{i}^{2}-\sum_{k} \frac{Z_{k}}{\overrightarrow{r_{i}}-\overrightarrow{R_{k}}}\right] \chi_{a}\left(\overrightarrow{x_{1}}\right) \\
+ & \frac{1}{2} \sum^{N} \sum^{N} \iint d \overrightarrow{x_{1}} d \overrightarrow{x_{2}} \chi_{a}^{*}(1) \chi_{b}^{*}(2) \frac{1}{r_{12}} \chi_{a}(1) \chi_{b}(2) \\
+ & \frac{1}{2} \sum^{N} \sum^{N} \iint d \overrightarrow{x_{1}} d \overrightarrow{x_{2}} \chi_{a}^{*}(1) \chi_{b}^{*}(2) \frac{1}{r_{12}} \chi_{a}(2) \chi_{b}(1)
\end{aligned}
$$

Term 1 is the energy of a single electron. Term 2 is the coulomb interaction between electron 1 and 2 . Term 3 is the "exchange" energy term.
\rightarrow The exchange energy term is a result of using the slater determinant, which deals with the exchange of electrons. This is a correction to the "mean field" term. \rightarrow To note, when $\mathrm{a}=\mathrm{b}$, the last terms cancel out.

7. Symbolic Notation

The above was a complete mess, to simplify we'll use the following notation.
The single electron term $h(1)=\frac{-1}{2} \overrightarrow{\nabla_{1}^{2}}-\frac{Z_{k}}{r_{1 k}}$
The coloumb term: $J_{b}(1) \chi_{a}(1)=\left[\int d \overrightarrow{x_{2}} \chi_{b}^{*}(2) r_{12}^{-1} \chi_{b}(2)\right] \chi_{a}(1)$
The exchange term: $K_{b}(1) \chi_{a}(1)=\left[\int d \overrightarrow{x_{2}} \chi_{b}^{*}(2) r_{12}^{-1} \chi_{a}(2)\right] \chi_{b}(1)$
Condense further to symbolic notation.
$E_{o}=\sum_{a}<a|h| a>+\frac{1}{2} \sum_{a b}<a b| | a b>$
And this is equivalent to the entire mess is the previous section.
Let's expand the last term just to be clear.
$\frac{1}{2} \sum_{a b}<a b \| a b>=\frac{1}{2} \sum_{a b}[a a \mid b b]-[a b \mid b a]$
In usage, this would appear as $\left[h(1)+\sum_{b \neq a} J_{b}(1)-K_{b}(1)\right] \chi_{a}(1)=\epsilon_{a} \chi_{a}(1)$ and the term in brackets is called the "fock" operator.

8. Basis Sets

$\left|\Psi_{1}(\vec{r})\right|^{2} d r_{i}^{2}=\rho_{1}\left(\overrightarrow{r_{1}}\right) d r_{1}$ which is probability of finding electrons. $\int \rho_{1}\left(\overrightarrow{r_{1}}\right) d \overrightarrow{r_{1}}=1$ over all space.
A "basis set" is a set of functions introduced to fit Ψ 's, but it's not a rigorous basis set as solved analytically.
$\Psi(\vec{r})=\sum_{a} c_{a} u_{a}(r)$
where c_{a} is a complex number and $u_{a}(r)$ is the basis. Together, they form vectors.
$\int d \vec{r} u_{a}^{*}(\vec{r}) u_{b}(\vec{r})=\delta_{a b}$ when orthnormal
$c_{a}=\int d r U_{a}^{*}(\vec{r}) \Psi(\vec{r})$

9. Dirac Notation

$\int \Psi_{a}^{*}(\vec{r}) \Psi_{a}(\vec{r})=<\Psi_{a}\left|\Psi_{b}>=<a\right| b>$ where : $<a \mid$ is called the "bra" and $\mid b>$ is called the "ket"
H is a linear operator.
$H\left(C_{a}\left|a>+C_{b}\right| b>\right)=C_{a} H\left|a>+C_{b} H\right| b>$
$\int \Psi_{a}^{*} H \Psi_{b}^{*} d r=<a|H| b>$
H is hermitian meaning $H=H^{\dagger}$
$<a\left|H^{\dagger}\right| b>=<b \mid H a>^{*}$
$<a|H b>=<H a| b>$
$<a \mid b>$ a is the complex conjugate.
The bras, kets define a matrix $H_{a b}=<a|H| b>=\left(\begin{array}{ccc}H_{11} & H_{12} & \ldots \\ H_{21} & H_{22} & \ldots \\ \ldots & \ldots & \ldots\end{array}\right)$
10. Hermitian Details

Important properties
\rightarrow Eigenfunctions are orthonormal
\rightarrow Eigenvalues are real
\rightarrow All observables are eigenvalues of hermitian operators
$\rightarrow d p(\alpha)=\left|<U_{\alpha}\right| \Psi>\left.\right|^{2} d \alpha=$ probability of getting α.
$\rightarrow d p(\vec{r})=|<\vec{r}| \Psi>\left.\right|^{2}$

