10.675 LECTURE 4

RICK RAJTER

1. TODAY
\rightarrow Dirac Notation
\rightarrow Exploring PES
\rightarrow Algorhythms for Geometry Optimization
\rightarrow Zero Point Energies and Stat Mech.

2. Concepts

minima and transition states.
3. PES - Potential Energy Surface

Example: Rotation of carbon-carbon bond in ethane $\left(C_{2} H_{6}\right)$.

In general, one can look at E_{o} as a function of any parameter. In this example, we will use orientation.
3N-6 degrees of freedom.

[^0]BO approximation (atoms are fixed, nuclei mass is infinite).

4. Method

$H_{i}^{\text {method }} \Psi_{i}=\epsilon_{i} \Psi_{i}$
$H_{i}^{\text {method }}=\frac{-1}{2} \nabla^{2}-\sum^{N} \frac{Z_{k}}{r_{1 K}}+V_{1}^{\text {method }}$
Where V_{1} varies depending on the method we are using.
Examples of Methods: Molecular obital vs Density functional theory.
$V_{i}^{\text {method }}=\sum_{j=2}^{N} \int \frac{\rho\left(r_{j}\right)}{\overrightarrow{r_{i}-r_{j}}} d \overrightarrow{r_{j}}+V_{i}^{\text {Xethod }}+V_{i}^{\text {Cmethod }}$
Where $\sum_{j=2}^{N} \int \frac{\rho\left(r_{j}\right)}{\overrightarrow{r_{i}}-\overrightarrow{r_{j}}} d \overrightarrow{r_{j}}$ is the mean field term.
$V_{i}^{\chi m e t h o d}$ exchange term (pauli exchange)
$V_{i}^{\text {Cmethod }}$ correlation term.
Use a trial basis set $\Psi_{i}=\sum c_{i j} g_{j}$
SOLVE $E_{o}=\sum_{1}^{N} \int \Psi_{i}^{*} H_{i}^{\text {method }} \Phi_{i} d \vec{r}+$ Nuc - Nuc terms.

5. Solving

Need to find $c_{i j}$'s which minimize E_{o}. Here's the detailed method.

1) Choose molecule nuclear positions + num of electrons
2) Choose method
3) Choose basis set
4) Choose initial guess for $c_{i j}^{\prime} s$
5) Solve Eigenvalue equation for new $c_{i} j$'s
6) Is $E_{\text {old }}-E_{\text {new }}<A T O L$?
7) If no, return to step 4 with new $c_{i j}$'s

7b) If yes, calculate the forces on the nuclei
8) Is the force $<$ force ${ }^{A T O L}$? If yes, finished.
$9)$ If not, update geometry, goto step 4 .

6. Details

$E_{o}^{e l e c}=V^{\text {nucleous }}=E(\vec{x})$ meaning the energy of the electron is dependent on the potential of the nuclei.
$\vec{x}=3 N=\left(R_{1 x}, R_{1 y}, R_{1 z}, R_{2 x}, R_{2 y}, \ldots\right)$
In the geometry optimization, we want to minimize such that
$d E / d x=0$ or $<A T O L$.
expand $E_{k+1}\left(\vec{x}_{k+1}\right)=E_{k}+\vec{g}_{k}^{t} \cdot\left(\vec{x}_{k+1}-\vec{x}_{k}\right)+1 / 2\left(\vec{x}_{k+1}-\vec{x}_{k}\right)^{T} \overline{\bar{\beta}}_{k}\left(\vec{x}_{k+1}-\vec{x}_{k}\right)$
Where: k is the step
\vec{g}_{k}^{t} are the gradient forces
$\overline{\bar{\beta}}_{k}$ is the Hessian Matrix.
SCF gives us E_{o}, \vec{g}. Then, update $\overline{\bar{\beta}}_{k}$ and it's inverse $\overline{\bar{H}}_{k}$
$\frac{d E_{k+1}}{d x_{k+1}}=\vec{g}_{k+1} g_{k}+\overline{\bar{\beta}}_{k}\left(\vec{x}_{k+1}-x_{k}\right)=0$
$\rightarrow \vec{P}$ step size to move atoms to next position.
$\vec{P}_{k}=\vec{x}_{k+1}-v e c x_{k}=\overline{\bar{\beta}}_{k}^{-1} \vec{g}_{k}=-\overline{\bar{H}}_{k} \vec{g}_{k}$
7. UPDATING $\overline{\bar{\beta}}_{k}$

Method \rightarrow steepest descent.
$\overline{\bar{\beta}}=c\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & . & . \\ 0 & 1 & 0 & 0 & . & . \\ 0 & 0 & 1 & 0 & . & . \\ 0 & 0 & 0 & 1 & . & . \\ . & . & . & . & . & . \\ . & . & . & . & . & .\end{array}\right)$
$c=1$ or $\neq 1$
Newton's Method
$\overline{\bar{\beta}} \rightarrow$ calculated explicitly (great for transition states)
$\overline{\bar{H}}_{k} \overline{\bar{H}}_{k-1}-\frac{\overline{\bar{H}}_{k-1} \Delta \vec{g}_{k} \Delta \vec{g}_{k}^{T} \overline{\bar{H}}_{k-1}}{\Delta \vec{g}_{k}^{T} \overline{\bar{H}}_{k-1} \Delta \vec{g}_{k}}$

[^0]: Date: Fall 2004.

