LECTURE 7

1. (a) Sketch the radial probability distribution for a 5d orbital in a carbon atom. You should label the axes, but do not need to include numbers. Use arrows to indicate the radial nodes.

(b) Label the most probable radius, r_{mp} , on your 5d radial probability distribution with an *.

(b) see * on rpd

2. Provide the ground state electron configuration expected for:

(a) Ca	(c) Cu	(e) Fe ²⁺
(b) V	(d) Br^{1}	(f) Hf

Note that you may always use the shorthand (noble gas) configuration unless specifically asked otherwise.

Also correct if all of the core electrons are explicitly written out (correctly).

(a) [Ar]	$4s^2$	(c) $[Ar]4s^{1}3d^{10}$	(e) [Ar]3d ⁶
(b) [Ar]	$4s^23d^3$	(d) [Kr]	(f) [Xe] $6s^24f^{14}5d^2$

3. The binding energy for a 3s electron in technetium (Z = 43) is -1090 eV.

(a) Calculate the effective nuclear charge, Z_{eff} , experienced by a 3s electron in technetium.

(b) Identify the most likely binding energy for a 3s electron in ruthenium (Z = 44) from the following three options: -980 eV, -1090 eV, or -1140 eV. Explain your reasoning.

(a) $Z_{eff} = 26.8$ (b) -1140 eV 5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.