Consider the following reaction:

$$
3 \mathrm{FeO}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{I}) \rightarrow 3 \mathrm{Fe}(\mathrm{I})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

If there are 12 moles of $\mathrm{FeO}(\mathrm{s})$ and 12 moles of $\mathrm{Al}(\mathrm{I})$, what is the maximum amount of $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ that can be produced?

1. 2.0 moles
2. 4.0 moles
3. 6.0 moles
4. 8.0 moles
5. 12 moles
6. 24 moles
7. 36 moles

Consider the following reaction:

$$
3 \mathrm{FeO}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{I}) \rightarrow 3 \mathrm{Fe}(\mathrm{I})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

If there are 12 moles of $\mathrm{FeO}(\mathrm{s})$ and 12 moles of $\mathrm{Al}(\mathrm{I})$, what is the maximum amount of $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ that can be produced?
$3 \% \quad$ 1. 2.0 moles
82% ©2. 4.0 moles
$8 \% \quad$ 3. 6.0 moles
$3 \% \quad$ 4. 8.0 moles
$3 \% \quad$ 5. 12 moles
1\% 6. 24 moles
$0 \% \quad$ 7. 36 moles

Identify the correct statement from the choices below:

1. Light wave A has a shorter λ and a lower v.
2. Light wave A has a shorter λ and a higher v.
3. Light wave A has a longer λ and a higher v.
4. Light wave A has a longer λ and a lower v.

light wave B

Identify the correct statement from the choices below:

light wave A

1. Light wave A has a shorter λ and a lower v. Light wave A has a shorter λ and a higher v.
2. Light wave A has a longer λ and a higher v.
3. Light wave A has a longer λ and a lower v.
light wave B

If a beam of light with energy $=4.0 \mathrm{eV}(1 \mathrm{eV}=$ $1.602 \times 10^{-19} \mathrm{~J}$) strikes a gold surface, what is the maximum kinetic energy of the ejected electrons?

If a beam of light with energy $=4.0 \mathrm{eV}(1 \mathrm{eV}=$ $1.602 \times 10^{-19} \mathrm{~J}$) strikes a gold surface, what is the maximum kinetic energy of the ejected electrons?

3%	1. K.E. $=9.1 \mathrm{eV}$
1%	2. K.E. $=5.1 \mathrm{eV}$
12%	3. K.E. $=1.1 \mathrm{eV}$
2%	4. K.E. $=4.0 \mathrm{eV}$

If a beam of light with energy $=8.0 \mathrm{eV}$ strikes a gold surface, what is the maximum kinetic energy of the ejected electrons?

1. $\mathrm{K} . \mathrm{E} .=13.1 \mathrm{eV}$
2. K.E. $=2.9 \mathrm{eV}$
3. $K . E .=8.0 \mathrm{eV}$
4. K.E. $=5.1 \mathrm{eV}$
5. No electrons will be ejected.

If a beam of light with energy $=8.0 \mathrm{eV}$ strikes a gold surface, what is the maximum kinetic energy of the ejected electrons?

$$
\begin{array}{ll}
0 \% & \text { 1. K.E. }=13.1 \mathrm{eV} \\
98 \% & \text { 2. K.E. }=2.9 \mathrm{eV} \\
1 \% & \text { 3. K.E. }=8.0 \mathrm{eV} \\
1 \% & \text { 4. K.E. }=5.1 \mathrm{eV} \\
1 \% & \text { 5. } \text { No electrons will be ejected. }
\end{array}
$$

MIT OpenCourseWare
|http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

