Readings for today: Section 1.9 - Atomic Orbitals. Section 1.10 - Electron Spin, Section 1.11 The Electronic Structure of Hydrogen. (Same sections in $4^{\text {th }} \mathrm{ed}$.)
Read for Lecture \#7: Section 1.12 - Orbital Energies (of many-electron atoms), Section 1.13 The Building-Up Principle. (Same sections in $4^{\text {th }}$ and $5^{\text {th }} \mathrm{ed}$.)

Topics:	I. Wavefunctions (Orbitals) for the Hydrogen Atom II. Shape and Size of S and P Orbitals III. Electron Spin and the Pauli Exclusion Principle

I. WAVEFUNCTIONS (ORBITALS) FOR THE HYDROGEN ATOM

Solving the Schrödinger Equation provides values for E_{n} and $\Psi(\mathrm{r}, \theta, \phi)$.
A total of 3 quantum numbers are needed to describe a wavefunction in 3D.

1. $\mathrm{n} \equiv$ principal quantum number
$\mathrm{n}=$
determines binding energy (energy level or shell)
2. $\quad l \equiv$ angular momentum quantum number
$l=$ \qquad
l is related to n, determines angular momentum, describes subshell, shape of orbital largest value of $l=n-1$
3. $m \equiv$ magnetic quantum number
$\mathrm{m}=$ \qquad
m is related to l, determines behavior in magnetic field, describes the specific orbital
To describe an orbital, we need to use all three quantum numbers:

$$
\Psi_{\mathrm{n} l \mathrm{~m}}(\mathrm{r}, \theta, \phi)
$$

The wavefunction describing the ground state is \qquad .

Using the terminology of chemists:
The Ψ_{100} orbital is instead called the \qquad orbital.
$\mathrm{n} \quad$ designates the shell or energy level (1,2,3...)
$l \quad$ designates the subshell (shape of orbital)
($s, p, d, f \ldots$)
m designates orbital orientation (specific orbital) $\left(p_{x}, p_{y}, p_{z} \ldots\right)$
$\ell=\mathbf{0} \Rightarrow$ \qquad orbital $\ell=1 \Rightarrow$ \qquad orbital $\ell=\mathbf{2} \Rightarrow$ \qquad orbital $\ell=\mathbf{3} \Rightarrow$ \qquad orbital
for $\ell=1: \quad \mathrm{m}=0$ is \mathbf{p}_{z} orbital, $\mathrm{m}= \pm 1$ are the \mathbf{p}_{x} and \mathbf{p}_{y} orbitals

	State label	wavefunction	orbital	H atom E_{n}	H atom $\mathrm{E}_{\mathrm{n}}[\mathrm{J}]$
$\begin{aligned} & \mathrm{n}=1 \\ & \ell=0 \\ & \mathrm{~m}=0 \end{aligned}$		ψ_{100}			$-2.18 \times 10^{-18} \mathrm{~J}$
$\begin{aligned} & \mathrm{n}=2 \\ & \ell=0 \\ & \mathrm{~m}=0 \end{aligned}$		ψ_{200}			$-5.45 \times 10^{-19} \mathrm{~J}$
$\begin{aligned} & \mathrm{n}=2 \\ & \ell=1 \\ & \mathrm{~m}=+1 \end{aligned}$		ψ_{211}			$-5.45 \times 10^{-19} \mathrm{~J}$
$\begin{aligned} & \mathrm{n}=2 \\ & \ell=1 \\ & \mathrm{~m}=0 \\ & \hline \end{aligned}$	210	ψ_{210}		$-\mathrm{R}_{\mathrm{H}} / 2^{2}$	$-5.45 \times 10^{-19} \mathrm{~J}$
$\begin{aligned} & \mathrm{n}=2 \\ & \ell=1 \end{aligned}$	21-1	ψ_{21-1}		$-\mathrm{R}_{\mathrm{H}} / 2^{2}$	$-5.45 \times 10^{-19} \mathrm{~J}$

What is the corresponding orbital for a 5,1,0 state?

For a hydrogen atom, orbitals with the same n value have the same energy: $E=-R_{H} / n^{2}$.
\qquad
\equiv having the same energy

For any principle quantum number, n, there are

\qquad degenerate orbitals in hydrogen (or any other 1 electron atom).

ъ

IN THEIR OWN WORDS

MIT graduate student Benjamin Ofori-Okai discusses how energy levels relate to research in nanoscale MRI (magnetic resonance imaging), a technique that allows 3-D imaging of biological molecules, such as proteins, and viruses.

THE PHYSICAL INTERPRETATION OF A WAVEFUNCTION

The probability of finding a particle (the electron!) in a defined region is proportional to the square of the wavefunction.

$$
\left[\Psi_{\mathrm{nlm}}(\mathrm{r}, \theta, \phi)\right]^{2}=\text { PROBABLITY DENSITY }=
$$

\qquad
probability of finding an electron per unit volume at \mathbf{r}, θ, ϕ

IIA. SHAPE OF S ORBITAL

To consider the shapes of orbitals, we can rewrite the wavefunction $\Psi_{n l m}$ as the product of a radial wavefunction, $\mathrm{R}_{\mathrm{n} l}(\mathrm{r})$, and an angular wavefunction $\mathrm{Y}_{\mathrm{lm}}(\theta, \phi)$

$$
\left.\Psi_{\mathrm{nlm}}(\mathrm{r}, \theta, \phi)\right]=\underset{\text { radial }}{\mathrm{R}_{\mathrm{nl}}(\mathrm{r})} \times \mathrm{x} \quad \mathrm{Y}_{\mathrm{lm}}(\theta, \phi)
$$

(a) radial wave functions			(b) angular wave functions		
n	l	$R_{n l}(r)$	l	m_{l}	$Y_{l, m l}(\theta, \phi)$
1	0	$2\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} e^{-Z r / a_{0}}$	0	0	$\left(\frac{1}{4 \pi}\right)^{1 / 2}$
2	0	$\frac{1}{2 \sqrt{2}}\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}}\left(2-\frac{Z r}{a_{0}}\right) e^{-\frac{Z r}{2 a_{0}}}$	1	x	$\left(\frac{3}{4 \pi}\right)^{1 / 2} \sin \theta \cos \phi$
	1	$\frac{1}{2 \sqrt{6}}\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}}\left(\frac{Z r}{a_{0}}\right) e^{-\frac{Z r}{2 a_{0}}}$		y	$\left(\frac{3}{4 \pi}\right)^{1 / 2} \sin \theta \sin \phi$
3	0	$\frac{2}{9 \sqrt{3}}\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}}\left(3-\frac{2 Z r}{a_{0}}-2 \frac{Z^{2} r^{2}}{9 a_{0}^{2}}\right) e^{-\frac{Z r}{3 a_{0}}}$		z	$\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta$

where $\mathrm{a}_{0}=$ \qquad $(a$ constant $)=52.9 \mathrm{pm}$
for a ground state H-atom:

For all s orbitals (1s, 2s, 3s, etc.), the angular wavefunction, Y, is a \qquad .
s orbitals are spherically symmetrical - independent of \qquad and \qquad .

There are three common plots used to help us visualize an s orbital: (1) Probability density Ψ^{2} plot of s orbitals in which density of dots represents probability density; (2) Wavefunction plotted again r (distance from nucleus); (3) Radial probability distribution as a function of radius.

RADIAL PROBABILITY DISTRIBUTION (RPD) reports on the probability of finding an electron in a spherical shell of thickness dr at a distance r from origin. Maximum probability or most probable value of r is denoted \qquad .

Image by MIT OpenCourseWare.
Adapted from Oxtoby, D., et al. Principles of Modern Chemistry, fifth edition. Thomson Brooks/Cole, 2002. ISBN: 9780030353734.
NODE: A value for r, θ, or ϕ for which $\Psi\left(\right.$ and $\left.\Psi^{2}\right)=$ \qquad .

RADIAL NODE: A value for \qquad for which $\Psi\left(\right.$ and $\left.\Psi^{2}\right)=0$. In other words, a radial node is a distance from the radius for which there is no probability of finding an electron.

To calculate the number of radical nodes $\mathbf{n - 1} \mathbf{- 1}$
1s: 1-1-0=0 radial nodes
2s: \qquad radial nodes

3s: \qquad radial nodes

4 p : \qquad radial nodes

Figure by MIT OpenCourseWare.

IIB. THE SHAPE OF P ORBITALS

- Unlike s orbitals, p orbitals have θ, ϕ dependence.
- P orbitals \qquad spherically symmetrical.
- P orbitals consist of two lobes (of opposite sign) separated by a \qquad plane on which $\Psi=0$ (and $\Psi^{2}=0$).
- There is zero probability of finding a p-electron in a nodal plane. Thus, there is \qquad probability of finding a p-electron at the nucleus.

Probability density maps of p orbitals:

Nodal planes: xy

yz

xz

Nodal planes (planes that have no electron density) arise from angular nodes in the wavefunction.

ANGULAR NODE: A value for \qquad at which $\Psi\left(\right.$ and $\left.\Psi^{2}\right)=0$.

In general, an orbital has: n \qquad total nodes
angular nodes
\qquad radial nodes

2s: \qquad angular nodes, \qquad radial nodes

2p: \qquad total nodes, \qquad angular nodes, \qquad radial nodes

3d: \qquad total nodes, \qquad angular nodes, \qquad radial nodes

Figure by MIT OpenCourseWare.

As n increases (from 1 to 2 to 3), the orbital r_{mp} "size" \qquad .

As l increases (from s to p to d) for a given n, the orbital $r_{m p}$ "size" \qquad .

Only electrons in s states have a substantial probability of being very close to nucleus. This means that although the "size" (also called the boundry surface) of s orbitals is larger than p or d orbitals, s-electrons are the \qquad shielded.

III. ELECTRON SPIN: THE FOURTH QUANTUM NUMBER

A fourth quantum number describes the spin of an electron within an orbital: the spin magnetic quantum number, \qquad
There is no classical analogy to spin.

- An electron can have two spin states:

$$
\mathrm{m}_{\mathrm{s}}=
$$

\qquad (spin up) or $\mathrm{m}_{\mathrm{s}}=$ \qquad (spin down).

- m_{s} completes the description of an \qquad and is NOT dependent on the orbital.

So we can describe a given orbital using three quantum numbers ($\mathrm{n}, l, \mathrm{~m}_{l}$) and a given electron using 4 quantum numbers ($\mathrm{n}, \mathrm{l}, \mathrm{m}_{l} \mathrm{~m}_{\mathrm{s}}$).
\qquad
$\Psi_{\mathrm{n} \mathrm{m}_{l}}$
describes an
$\underset{\text { describes an }}{\Psi_{n} \operatorname{lm}_{l} \mathrm{~m}_{\mathrm{s}}}$ \qquad

PAULI EXCLUSION PRINCIPLE

No two electrons can be in the same orbital and have the same spin.
No two electrons in the same atom can have the same \qquad quantum numbers.
$\overline{1 s^{2}} \quad \overline{2 S^{2}} \quad \overline{2 p_{x}^{2}} \quad \overline{2 p_{y}^{2}} \quad \overline{2 p_{z}^{2}}{ }^{2}$

Within each orbital, electrons are paired (one spin up and one spin down).
One orbital can hold no more than two electrons.

MIT OpenCourseWare
http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

