LECTURE 8

1. Consider a neutral atom with 8 distinct electron binding energies: $-14 \mathrm{eV},-28 \mathrm{eV},-94 \mathrm{eV}$, $-218 \mathrm{eV},-293 \mathrm{eV},-1730 \mathrm{eV},-1921 \mathrm{eV}$, and -14326 eV .
(a) Name all of the possible ground state atoms that could have these binding energies (without looking up any values).
(b) Identify the binding energies of the $1 \mathrm{~s}, 2 \mathrm{~s}$, and 3 s orbitals in this atom.
(c) If this atom is subjected to photoelectron spectroscopy using 0.564 nm incident X rays, with what maximum kinetic energy (in eV) could a 3s electron emerge?
(a) $\mathrm{Ga}, \mathrm{Ge}, \mathrm{As}, \mathrm{Se}, \mathrm{Br}$, or Kr .
(b) 1s: -14326 eV; 2s: -1921 eV; 3s: -293 eV
(c) K.E. $=1.91 * 10^{3} \mathrm{eV}$

Additional Book Problems:

Atkins and Jones, Chemical Principles, fifth edition:
Chapter 1.17, Self-Test 1.14A\&B (problem 1.23, 1.24)

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

