Identify which has the smaller IE and why: $\mathrm{Al}(\mathrm{Z}=13)$ or $\mathrm{P}(\mathrm{Z}=15)$

```
Group->1 2 2 3 4 4 5 5 6 6 7 7 8 8
``` \(\downarrow\) Period
\begin{tabular}{|c|c|c|}
\hline 1 & 1
\(H\) & \\
\hline 2 & \[
\begin{aligned}
& \hline \hline 3 \\
& \mathrm{Li}
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& \hline \mathrm{Be}
\end{aligned}
\] \\
\hline 3 & \[
\begin{aligned}
& \hline 11 \\
& \mathrm{Na}
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline 12 \\
& \mathrm{Mg}
\end{aligned}
\] \\
\hline 4 & \[
\begin{gathered}
\hline 19 \\
\mathrm{~K}
\end{gathered}
\] & \[
\begin{aligned}
& \hline 20 \\
& \mathrm{Ca}
\end{aligned}
\] \\
\hline
\end{tabular}
1. Al (lower \(\mathrm{Z}_{\text {eff }}\))
2. \(P\) (lower \(Z_{\text {eff }}\))
3. Al (higher \(\mathrm{Z}_{\text {eff }}\))
4. P (higher \(\mathrm{Z}_{\text {eff }}\))

Identify which has the smaller IE and why: \(\mathrm{Al}(\mathrm{Z}=13)\) or \(\mathrm{P}(\mathrm{Z}=15)\)
```

Group->1 1 2 3 4 4 5 5 6 6 7 7 8 8

``` \(\downarrow\) Period
 73\% © 1. Al (lower \(\mathrm{Z}_{\text {eff }}\))
13\% 2. P (lower \(\mathrm{Z}_{\text {eff }}\))
4\% 3. Al (higher \(\mathrm{Z}_{\text {eff }}\))
\(9 \%\) 4. \(\mathrm{P}\left(\right.\) higher \(\left.\mathrm{Z}_{\mathrm{eff}}\right)\)

\section*{Which molecule has more polar bonds?}
1. Vitamin A
2. Vitamin B9
3. Same number

\section*{Which molecule has more polar bonds?}
1. Vitamin A
2. Vitamin B9
3. Same number

How many valence electrons does fluorine (F) have?
1. 1
2. 2
3. 3
4. 4
5. 5
6. 6
7. 7
8. 8
9. 9

\section*{How many valence electrons does fluorine (F) have?}
\begin{tabular}{|c|c|}
\hline 3\% & 1. \\
\hline |1\% & 2. 2 \\
\hline 1\% & 3. \\
\hline 0\% & 4. 4 \\
\hline 3\% & 5. 5 \\
\hline 0\% & 6. 6 \\
\hline 90\% & \\
\hline 1\% & 8. \\
\hline & 9.9 \\
\hline
\end{tabular}

\title{
Which atom would you expect to be in the center of the Lewis Structure of HCN?
}
1. H
2. C
3. N

\section*{Which atom would you expect to be in the center of the Lewis Structure of HCN?}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { 3\% } & 1 . \mathrm{H} \\
87 \% & 2 . \mathrm{C}
\end{array}
\]} \\
\hline \\
\hline 11\% 3. N \\
\hline
\end{tabular}

\section*{FC on N}
1. -3
2. -2
3. -1
4. 0
5. +1
6. +2
7. +3

\section*{FC on N}

Which Lewis structure would you predict to be most stable?
1. Structure A
2. Structure B
3. Structure C

\section*{Which Lewis structure would you predict to be most stable?}
1. Structure A
()2. Structure B
3. Structure C

\section*{Which is correct?}
1. Struct \#1 Struct \#2
\[
\begin{aligned}
& \mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=0 \\
& \mathrm{FC}_{\mathrm{OB}}=+1 \mathrm{FC}_{\mathrm{OB}}=+1 \\
& \mathrm{FC}_{\mathrm{OC}}=-1 \quad \mathrm{FC}_{\mathrm{OC}}=-1
\end{aligned}
\]
3. Struct \#1 Struct \#2
\[
\begin{array}{ll}
\mathrm{FC}_{\mathrm{OA}}=-2 & \mathrm{FC}_{\mathrm{OA}}=-2 \\
\mathrm{FC}_{\mathrm{OB}}=0 & \mathrm{FC}_{\mathrm{OB}}=0 \\
\mathrm{FC}_{\mathrm{OC}}=-2 & \mathrm{FC}_{\mathrm{OC}}=-2
\end{array}
\]
2. Struct \#1 Struct \#2
\(\mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=-1\)
\(\mathrm{FC}_{\mathrm{OB}}=+1 \mathrm{FC}_{\mathrm{OB}}=+1\)
\(\mathrm{FC}_{\mathrm{oc}}=-1 \quad \mathrm{FC}_{\mathrm{oc}}=0\)
4. Struct \#1 Struct \#2
\(\mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=1\)
\(\mathrm{FC}_{\text {OB }}=-1 \mathrm{FC}_{\text {OB }}=-1\)
\(\mathrm{FC}_{\mathrm{oc}}=1 \quad \mathrm{FC}_{\mathrm{oc}}=0\)

\section*{Which is correct?}
1. Struct \#1 Struct \#2
\[
\begin{aligned}
& \mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=0 \\
& \mathrm{FC}_{\mathrm{OB}}=+1 \quad \mathrm{FC}_{\mathrm{OB}}=+1 \\
& \mathrm{FC}_{\mathrm{OC}}=-1 \quad \mathrm{FC}_{\mathrm{OC}}=-1
\end{aligned}
\]
2. Struct \#1 Struct \#2
\[
\begin{aligned}
& \mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=-1 \\
& \mathrm{FC}_{\mathrm{OB}}=+1 \quad \mathrm{FC}_{\mathrm{OB}}=+1 \\
& \mathrm{FC}_{\mathrm{OC}}=-1 \quad \mathrm{FC}_{\mathrm{OC}}=0
\end{aligned}
\]
3. Struct \#1 Struct \#2
\[
\begin{array}{ll}
\mathrm{FC}_{\mathrm{OA}}=-2 & \mathrm{FC}_{\mathrm{OA}}=-2 \\
\mathrm{FC}_{\mathrm{OB}}=0 & \mathrm{FC}_{\mathrm{OB}}=0 \\
\mathrm{FC}_{\mathrm{OC}}=-2 & \mathrm{FC}_{\mathrm{OC}}=-2
\end{array}
\]
\begin{tabular}{r|l|}
\cline { 2 - 3 } & 4. Struct \#1 Struct \#2 \\
\(-0 \%\) & \(\mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=1\) \\
\(-0 \%\) & \(\mathrm{FC}_{\mathrm{OB}}=-1 \quad \mathrm{FC}_{\mathrm{OB}}=-1\) \\
\(-0 \%\) & \(\mathrm{FC}_{\mathrm{OC}}=1 \quad \mathrm{FC}_{\mathrm{OC}}=0\) \\
\(-0 \%\) & \\
&
\end{tabular}

MIT OpenCourseWare
|http://ocw.mit.edu

\subsection*{5.111 Principles of Chemical Science}

Fall 2014

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.```

