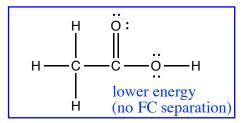
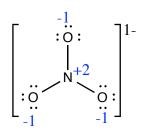
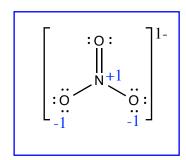

LECTURE 10

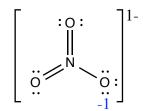
- 1. Write the Lewis Structure for the following compounds:
 - (a) CH₃F

(b) NBr_3

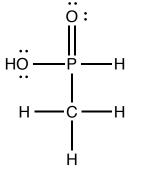


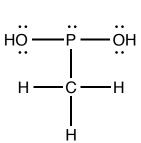

- 2. Determine the formal charge on each atom and label all non-zero formal charges in the following molecules. Identify most stable (lowest energy) structure for each case.
 - (a) acetic acid: -1.


 H : O:


 H C C O H

(b) nitrate ion:





note: not a valid structure! N can't have 5 bonds!

3. Are the molecules below a pair of resonance structures? Briefly explain.

No. In order to be resonance structures, only the electrons can be rearranged. When atoms are in a different relationship to each other, the two structures are not resonance forms, they are different molecules.

LECTURE 10

4. Write the Lewis structure for the guanadinium ion, $C(NH_2)_3^{+1}$, and include all relevant resonance forms. (Note that the C is bonded to three N atoms.) *Note that you do not need to indicate FC for this problem, but you should always consider FC when writing Lewis structures*.

$$\begin{bmatrix}
H & H \\
H & N \\
H & N \\
N & C & N \\
H & H
\end{bmatrix}$$

$$\begin{bmatrix}
H & H \\
N & C \\
N & H
\end{bmatrix}$$

$$\begin{bmatrix}
H & H \\
N & C \\
N & H
\end{bmatrix}$$

$$\begin{bmatrix}
H & H \\
N & C \\
N & H
\end{bmatrix}$$

$$\begin{bmatrix}
H & H \\
N & C \\
N & H
\end{bmatrix}$$

5. The **skeletal structures** of two amino acids, **leucine** and **arginine**, are drawn below. Non-zero formal charges are indicated. Provide the **Lewis structure(s)**, **including double bonds and lone pairs**, for each of these molecules. If there are equivalent resonance forms (which may include moving the formal charge on N), include them.

(a)
$$H_2N$$
—CH—C—OH

 CH_2 leucine

 CH_2 leucine

 CH_3
 CH_3

(b) H_2N —CH—C—OH

 CH_2 arginine

 CH_2 leucine

 CH_2 leucine

MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.