Which of the following might

 represent the term on the y-axis?1. Atomic radius
2. Ionization energy
3. Electron affinity ${ }^{\text {Ho }}$
4. Electronegativity
5. 1 or 2
6. 2, 3, or 4

Which of the following might represent the term on the y-axis?

7% 1. Atomic radius

53\% O. Ionization energy
3% 3. Electron affinity ${ }^{\text {Ho }}$
3\% 4. Electronegativity
$7 \% \quad 5$, 1 or 2
28% 6. 2, 3, or 4

Which is correct?

1. Struct \#1 Struct \#2

$$
\begin{aligned}
& \mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=0 \\
& \mathrm{FC}_{\mathrm{OB}}=+1 \mathrm{FC}_{\mathrm{OB}}=+1 \\
& \mathrm{FC}_{\mathrm{OC}}=-1 \quad \mathrm{FC}_{\mathrm{OC}}=-1
\end{aligned}
$$

3. Struct \#1 Struct \#2

$$
\begin{array}{ll}
\mathrm{FC}_{\mathrm{OA}}=-2 & \mathrm{FC}_{\mathrm{OA}}=-2 \\
\mathrm{FC}_{\mathrm{OB}}=0 & \mathrm{FC}_{\mathrm{OB}}=0 \\
\mathrm{FC}_{\mathrm{OC}}=-2 & \mathrm{FC}_{\mathrm{OC}}=-2
\end{array}
$$

1.
2.
3.
4.
5. Struct \#1 Struct \#2
$\mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=-1$
$\mathrm{FC}_{\mathrm{OB}}=+1 \mathrm{FC}_{\mathrm{OB}}=+1$
$\mathrm{FC}_{\text {oc }}=-1 \quad \mathrm{FC}_{\mathrm{oc}}=0$
6. Struct \#1 Struct \#2

$$
\begin{aligned}
& \mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=1 \\
& \mathrm{FC}_{\mathrm{OB}}=-1 \quad \mathrm{FC}_{\mathrm{OB}}=-1 \\
& \mathrm{FC}_{\mathrm{OC}}=1 \quad \mathrm{FC}
\end{aligned}
$$

Which is correct?

1. Struct \#1 Struct \#2

$$
\begin{aligned}
& \mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=0 \\
& \mathrm{FC}_{\mathrm{OB}}=+1 \mathrm{FC}_{\mathrm{OB}}=+1 \\
& \mathrm{FC}_{\mathrm{OC}}=-1 \quad \mathrm{FC}_{\mathrm{OC}}=-1
\end{aligned}
$$

3. Struct \#1 Struct \#2

$$
\begin{array}{ll}
\mathrm{FC}_{\mathrm{OA}}=-2 & \mathrm{FC}_{\mathrm{OA}}=-2 \\
\mathrm{FC}_{\mathrm{OB}}=0 & \mathrm{FC}_{\mathrm{OB}}=0 \\
\mathrm{FC}_{\mathrm{OC}}=-2 & \mathrm{FC}_{\mathrm{OC}}=-2
\end{array}
$$

2. Struct \#1 Struct \#2

$$
\begin{aligned}
& \mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=-1 \\
& \mathrm{FC}_{\mathrm{OB}}=+1 \mathrm{FC}_{\mathrm{OB}}=+1 \\
& \mathrm{FC}_{\mathrm{OC}}=-1 \quad \mathrm{FC}_{\mathrm{OC}}=0
\end{aligned}
$$

4. Struct \#1 Struct \#2

$$
\begin{aligned}
& \mathrm{FC}_{\mathrm{OA}}=0 \quad \mathrm{FC}_{\mathrm{OA}}=1 \\
& \mathrm{FC}_{\mathrm{OB}}=-1 \quad \mathrm{FC}_{\mathrm{OB}}=-1 \\
& \mathrm{FC}_{\mathrm{OC}}=1 \quad \mathrm{FC}
\end{aligned}
$$

10\% 1.

69\% 2.
$9 \% \quad 3$.

Which molecule is nitric oxide?

1. NO
2. $\mathrm{N}_{2} \mathrm{O}$
3. HNO_{2}

Which molecule is nitric oxide?

85%	1. NO
8%	2. $\mathrm{N}_{2} \mathrm{O}$
7%	3. HNO_{2}

Determine the FC for the doubled-bonded F atom in our BF_{3} Lewis Structure

1. +1
2. +2
3. 0
4. -1
5. -2

Determine the FC for the doubled-bonded F atom in our BF_{3} Lewis Structure

74%	el. +1
14%	$2 .+2$
5%	3. 0
5%	$4 .-1$
2%	$5 .-2$

How many additional resonance structures are there for $\mathrm{CrO}_{4}{ }^{2-}$?

1. One
2. Two
3. Three
4. Four
5. Five
6. Six
7. Seven
8. Eight
9. Zero

How many additional resonance structures are there for $\mathrm{CrO}_{4}{ }^{2-}$?

3%	1. One
8%	2. Two
6%	3. Three

70\% (3). Four

5. Five
6. Six

0\% 7. Seven
1\% 8. Eight
3%
9. Zero

MIT OpenCourseWare
|http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

