Which of the following might represent the term on the y-axis?

Ar

Kr

Atomic number

Xe

Lanthanides

Rn

Actinides

- 1. Atomic radius
- 2. Ionization energy
- 3. Electron affinity
- 4. Electronegativity
- 5. 1 or 2
- 6. 2, 3, or 4

Which of the following might represent the term on the y-axis?

7% 1. Atomic radius

Which is correct?

- 1 . Struct #1 Struct #2 $FC_{OA} = 0$ $FC_{OA} = 0$ $FC_{OB} = +1$ $FC_{OB} = +1$ $FC_{OC} = -1$ $FC_{OC} = -1$
- 3. Struct #1 Struct #2

1.

2.

3.

4.

 $FC_{OA} = -2 \quad FC_{OA} = -2$ $FC_{OB} = 0 \quad FC_{OB} = 0$ $FC_{OC} = -2 \quad FC_{OC} = -2$ 2. Struct #1 Struct #2 $FC_{OA} = 0$ $FC_{OA} = -1$ $FC_{OB} = +1$ $FC_{OB} = +1$ $FC_{OC} = -1$ $FC_{OC} = 0$ 3

4. Struct #1 Struct #2 $FC_{OA} = 0$ $FC_{OA} = 1$ $FC_{OB} = -1$ $FC_{OB} = -1$ $FC_{OC} = 1$ $FC_{OC} = 0$

Which is correct?

- 1 . Struct #1 Struct #2 $FC_{OA} = 0$ $FC_{OA} = 0$ $FC_{OB} = +1$ $FC_{OB} = +1$ $FC_{OC} = -1$ $FC_{OC} = -1$
- 3. Struct #1 Struct #2
 - $FC_{OA} = -2 \quad FC_{OA} = -2$ $FC_{OB} = 0 \quad FC_{OB} = 0$ $FC_{OC} = -2 \quad FC_{OC} = -2$

- 2. Struct #1 Struct #2 $FC_{OA} = 0$ $FC_{OA} = -1$ $FC_{OB} = +1$ $FC_{OB} = +1$ $FC_{OC} = -1$ $FC_{OC} = 0$
 - 4. Struct #1 Struct #2 $FC_{OA} = 0$ $FC_{OA} = 1$ $FC_{OB} = -1$ $FC_{OB} = -1$ $FC_{OC} = 1$ $FC_{OC} = 0$

Which molecule is nitric oxide?

- 1. NO
- 2. N₂O
- 3. HNO₂

Which molecule is nitric oxide?

Determine the FC for the doubled-bonded F atom in our BF₃ Lewis Structure

7

 $1. +1 \\ 2. +2 \\ 3. 0 \\ 4. -1 \\ 5. -2$

Determine the FC for the doubled-bonded F atom in our BF₃ Lewis Structure

How many **additional** resonance structures are there for CrO_4^{2-} ?

- 1. One
- 2. Two
- 3. Three
- 4. Four
- 5. Five
- 6. Six
- 7. Seven
- 8. Eight
- 9. Zero

	How many additional resonance
	structures are there for CrO_4^{2-} ?
<mark>3%</mark>	1. One
8%	2. Two
6%	3. Three
70%	•4. Four
<mark>3%</mark>	5. Five
7%	6. Six
0%	7. Seven
1%	8. Eight
<mark>3%</mark>	9. Zero

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.