LECTURE 12

1. For the molecules or molecular ions in the problem above, give the formula type (Example: $\mathrm{AX}_{2} \mathrm{E}$), the steric number (SN), indicate the geometry (Example: bent), and give expected bond angles.

Compound	Formula Type	SN	Geometry	Bond angle(s)
(a) AlCl_{4}^{-1}	AX_{4}	4	Tetrahedral	109.5°
(b) XeF_{3}^{+1}	$\mathrm{AX}_{3} \mathrm{E}_{2}$	5	T-Shaped	$<90^{\circ}$
(c) $\mathrm{PCl}_{6}{ }^{-1}$	AX_{6}	6	Octahedral	90°
(d) IF_{5}	$\mathrm{AX}_{5} \mathrm{E}$	6	Square Pyramidal	$<90^{\circ}$

2. For each of the following molecules, write the Lewis structure and predict whether each molecule is polar or nonpolar:
(a) NH_{3}
(b) BF_{3}
(c) OF_{2}
(d) IF_{3}

Note that you do not need to indicate formal charges (FC) on your Lewis structures, but you should consider FC to draw most stable Lewis structures.

a) NH_{3} is polar	b) BF_{3} is nonpolar	c) OF_{2} is polar	d) IF_{3} is polar

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

