LECTURE 13

1. Draw a molecular orbital diagram and determine the bond order expected for the molecule B_{2}. For full credit on MO diagrams,

- label increasing energy with an arrow next to the diagram.
- pay attention to whether the question asks for valence electrons or all electrons.
- for any bonding orbital drawn, include the corresponding anti-bonding orbital, even if it is not filled with any electrons.
- Label each atomic orbital (1s, $2 \mathrm{~s}, 2 \mathrm{p}_{\mathrm{x}}, 2 \mathrm{p}_{\mathrm{y}}, 2 \mathrm{p}_{\mathrm{z}}$ etc.) and each molecular orbital ($\sigma 2 \mathrm{~s}, \pi 2 \mathrm{p}_{\mathrm{x}}, \pi 2 \mathrm{p}_{\mathrm{y}}$, etc.) that you draw.
- Fill in the electrons for both the atomic and molecular orbitals.

Bond order $=1 / 2(6-4)=\mathbf{1}$

2. (a) Write the valence electron configuration (from lowest to highest orbital energies) for the ion $\mathrm{N}_{2}{ }^{-1}$. Your answer should be in a form similar to $(\sigma 2 \mathrm{~s})^{2}$, which is the valence configuration for Li_{2}.
(b) What is the bond order of $\mathrm{N}_{2}{ }^{-1}$?
(c) Which has a longer bond, N_{2}^{-1} or N_{2} ? Justify your answer using bond order.
(a) $(\sigma 2 \mathrm{~s})^{2}\left(\sigma 2 \mathrm{~s}^{*}\right)^{2}\left(\pi 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\sigma 2 p_{z}\right)^{2}\left(\pi 2 p_{x}{ }^{*}\right)^{1}$
(b) 2.5
(c) The $\mathbf{N}-\mathbf{N}$ bond is stronger in \mathbf{N}_{2} since an electron is removed from an antibonding orbital, increasing the bond order from 2.5 to 3.

LECTURE 13

3. (a) Draw a MO diagram for the valence electrons of BC. Label all atomic and molecular orbitals.
(b) Write the molecular orbital configuration for the valence electrons in BC and in BC^{1-}.
(c) Which of the molecular orbitals in BC do not have a planar node along the internuclear axis?
(d) Which has the stronger B-C bond, BC or BC^{1-} ? Justify your answer using bond order.
(a)

(b)
$\mathrm{BC}: 7$ valence electrons
BC^{1-} : 8 valence electrons
$(\sigma 2 \mathrm{~s})^{2}\left(\sigma 2 \mathrm{~s}^{*}\right)^{2}(\pi 2 \mathrm{px})^{2}(\pi 2 \mathrm{py})^{1}$
(c) Only π orbitals have planar nodes at the internuclear (bonding) axis. The following orbitals do not have nodal planes along the bonding axis: $\sigma 2 s, \sigma 2 s^{*}$, $\sigma 2 p z$, and $\sigma 2 p z^{*}$
(d) The B-C bond is stronger in BC^{1-} since an electron is added to a bonding orbital, increasing the bond order from 1.5 to 2.
4. For each of the following molecules, (i) write the valence electron configuration (Your answer should be in a form similar to $(\sigma 2 \mathrm{~s})^{2}$, which is the valence configuration for Li_{2}) and (ii) determine if the molecule is paramagnetic (has unpaired electrons) or diamagnetic (does not have unpaired electrons). If the species is paramagnetic, identify the number of unpaired electrons. (a) $\mathrm{Cl}_{2}{ }^{1+}$; (b) $\mathrm{O}_{2}{ }^{1+}$
(a) $\mathrm{Cl}_{2}{ }^{+}: 13$ valence electrons $\left.(\sigma 3 \mathrm{~s})^{2}\left(\sigma 3 \mathrm{~s}^{*}\right)^{2}(\sigma 3 \mathrm{pz})^{2}(\pi 3 \mathrm{px})^{2}(\pi 3 \mathrm{py})^{2}(\pi 3 \mathrm{px} *)^{2}(\pi 3 \mathrm{py})^{*}\right)^{1}$
paramagnetic: 1 unpaired electron

LECTURE 13

(b) $\mathrm{O}_{2}^{+}: 11$ valence electrons
$(\sigma 2 \mathrm{~s})^{2}\left(\sigma 2 \mathrm{~s}^{*}\right)^{2}(\sigma 2 \mathrm{pz})^{2}(\pi 2 \mathrm{px})^{2}(\pi 2 \mathrm{py})^{2}\left(\pi 2 \mathrm{p} \mathrm{x}^{*}\right)^{1}$
paramagnetic: 1 unpaired electron

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

