Readings for today: Sections 3.4, 3.5, 3.6 and 3.7 (Same sections in $4^{\text {th }}$ and $5^{\text {th }} \mathrm{ed}$) Valence Bond Theory.
Read for Lecture \#16: Sections 6.13, 6.15, 6.16, 6.17, 6.18, and 6.20 (Same sections in $4^{\text {th }}$ and $5^{\text {th }} \mathrm{ed}$) - The Enthalpy of Chemical Change.

Topics: I. Valence bond theory and hybridization

A. Sigma and pi bonds
B. Hybridization of atomic orbitals
i. sp^{3} hybridization
ii. sp^{2} hybridization
iii. sp hybridization

I. VALENCE BOND THEORY AND HYBRIDIZATION

In valence bond theory, bonds result from the pairing of unpaired electrons in atomic orbitals.

A. SIGMA AND PI BONDS

$\mathrm{H} \quad \mathrm{H}$
$\boldsymbol{\sigma}$ (sigma) bond: cylindrically symmetric with__ nodal plane across the bond axis. $\boldsymbol{\pi}$ (pi) bond: a bond with e^{-}density in two lobes, one on each side of the bond axis. A pi bond has a \qquad nodal plane along the bond axis.
We can describe multiple bonds according to valence-bond theory.

- single bond:
- double bond: one $\boldsymbol{\sigma}$-bond plus one
- triple bond: one $\boldsymbol{\sigma}$-bond plus \qquad π-bonds

B. HYBRIDIZATION OF ATOMIC ORBITALS

i) sp^{3} hybridization

A carbon atom has four unpaired electrons available for bonding once a 2 s-electron is
\qquad to an empty 2-p orbital.

The sp^{3} hybrid orbitals are equivalent and degenerate. They differ only in their
\qquad in space.

For carbon, each sp^{3} orbital contains a single electron, allowing four bonds.

What provides the energy for the initial electron promotion?
\qquad
!

Each bond is labeled based on the bond type (σ or π) and atomic orbital composition: \qquad (C \qquad , H \qquad

Consider ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$.

$$
\overline{2 s^{3}} \frac{}{2 \mathrm{sp}^{3}} \frac{}{2 \mathrm{sp}^{3}} \frac{1}{2 \mathrm{sp}^{3}} \frac{}{2 \mathrm{sp}^{3}} \frac{}{2 \mathrm{sp}^{3}} \frac{1}{2 \mathrm{sp}^{3}}
$$

Two bond types in ethane: \qquad and \qquad .

Nitrogen: Electron promotion \qquad occur with nitrogen because promotion would not increase the number of unpaired electrons available for bonding.

$\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle \qquad
N -atom geometry: \qquad
N-H bond description: \qquad

Oxygen: Electron promotion does not occur.

$\mathrm{H}_{2} \mathrm{O}$ geometry: \qquad
O-H bond description: \qquad

ii) sp^{2} hybridization

sp^{2} hybrid orbitals form from the combination of one s-orbital and two p-orbitals.

Boron: Boron has 3 unpaired electrons available for bonding once a 2 s-electron is promoted to an empty 2-p orbital.

The s-orbital and two of the p-orbitals hybridize to form \qquad sp^{2} orbitals. The three sp^{2}-orbitals lie in a \qquad to minimize electron repulsion.

trigonal planar

Carbon: Carbon can also form sp^{2} hybrid orbitals, such as in the case of ethylene $\mathrm{C}_{2} \mathrm{H}_{4}$.

Ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ has a C-C double bond, meaning 1 \qquad -bond and 1 \qquad -bond.

looking down the x -axis
$\sigma($ \qquad , \qquad) $\pi($ \qquad ,

In addition to the C-C double bond, there are four C-H bonds: σ (\qquad , \qquad)

Molecules \qquad rotate around a double bond. Rotation would require breaking the pi (π) bond.

iii) $s p$ hybridization

sp hybrid orbitals form from the combination of one s-orbital and 1 p-orbital.

Carbon can also form sp hybrid orbitals. Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ with C-C triple bond.

$\sigma($ \qquad , _
$\pi($ \qquad ,
$\pi($ \qquad ,

Summary for hydrocarbon molecules that contain two-carbons:

Carbons in $\mathrm{C}_{2} \mathrm{H}_{6}$ are \qquad hybridized, have a \qquad C-C bond, and tetrahedral geometry Carbons in $\mathrm{C}_{2} \mathrm{H}_{4}$ are $\mathbf{s p}^{2}$ hybridized, have a \qquad C-C bond, and \qquad geometry
Carbons in $\mathrm{C}_{2} \mathrm{H}_{2}$ are \qquad hybridized, have a triple C-C bond, and \qquad geometry

DETERMINING HYBIDIZATION IN COMPLEX MOLECULES

To determine the hybridization of a given atom in a molecule,
(\# of bonded atoms) + (\# of lone pairs) = \# of hybrid orbitals
2 hybrid orbitals- \qquad 3 hybrid orbitals 4 hybrid orbitals- sp^{3} Exception: single-bonded, \qquad atoms. For the purposes of this course, do NOT hybridize single-bonded, terminal atoms.

Try an example: ascorbic acid (vitamin C)

$\begin{array}{ll}\mathrm{C}_{\mathrm{a}}: & \mathrm{C}_{\mathrm{d}}: \\ \mathrm{C}_{\mathrm{b}}: & \mathrm{C}_{\mathrm{e}}: \\ \mathrm{C}_{\mathrm{c}}: & \mathrm{C}_{\mathrm{f}}:\end{array}$

Identify the symmetry and name the hybrid or atomic orbitals that constitute the bonds below:

Bonds to carbon b :

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{b}}-\mathrm{H}: \\
& \mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\mathrm{a}}: \sigma\left(\mathrm{C} 2 \mathrm{sp}^{3}, \mathrm{C} 2 \mathrm{sp}^{3}\right) \\
& \mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\mathrm{c}}: \sigma\left(\mathrm{C} 2 \mathrm{sp}^{3}, \mathrm{C} 2 \mathrm{sp}^{3}\right) \\
& \mathrm{C}_{\mathrm{b}}-\mathrm{O}:
\end{aligned}
$$

Identify the hybridization and geometry of each C atom:

Bonds to carbon d:
$\mathrm{C}_{\mathrm{d}}-\mathrm{O}:$
$\mathrm{C}_{\mathrm{d}}-\mathrm{C}_{\mathrm{c}}: \sigma\left(\mathrm{C} 2 \mathrm{sp}^{2}, \mathrm{C} 2 \mathrm{sp}^{3}\right)$
$\mathrm{C}_{\mathrm{d}} \mathrm{C}_{\mathrm{e}}$:

MIT OpenCourseWare
http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

