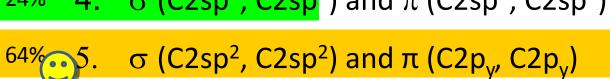

Identify the type of carbon-carbon bond that is boxed in red

1

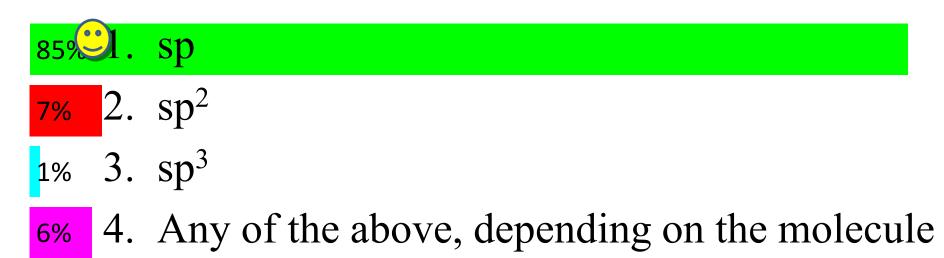
- 1. σ (C2sp³, C2sp³) and π (C2sp³, C2sp³)
- 2. σ (C2sp³, C2sp³) and σ (C2sp³, C2sp³)
- 3. σ (C2sp², C2sp²) and σ (C2sp², C2sp²)
- 4. σ (C2sp², C2sp²) and π (C2sp², C2sp²)
- 5. σ (C2sp², C2sp²) and π (C2p_y, C2p_y)
- 6. σ (C2p_y, C2p_y) and π (C2sp², C2sp²)


Clicker Competition Today! Defending Winners: Recitation 13

Identify the type of carbon-carbon bond that is boxed in red

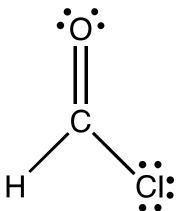
Me₂I

- <mark>6%</mark> 1. σ (C2sp³, C2sp³) and π (C2sp³, C2sp³)
- <mark>2%</mark> 2. σ (C2sp³, C2sp³) and σ (C2sp³, C2sp³)
- 3% 3. σ (C2sp², C2sp²) and σ (C2sp², C2sp²)
- **24% 4.** σ (C2sp², C2sp²) and π (C2sp², C2sp²)

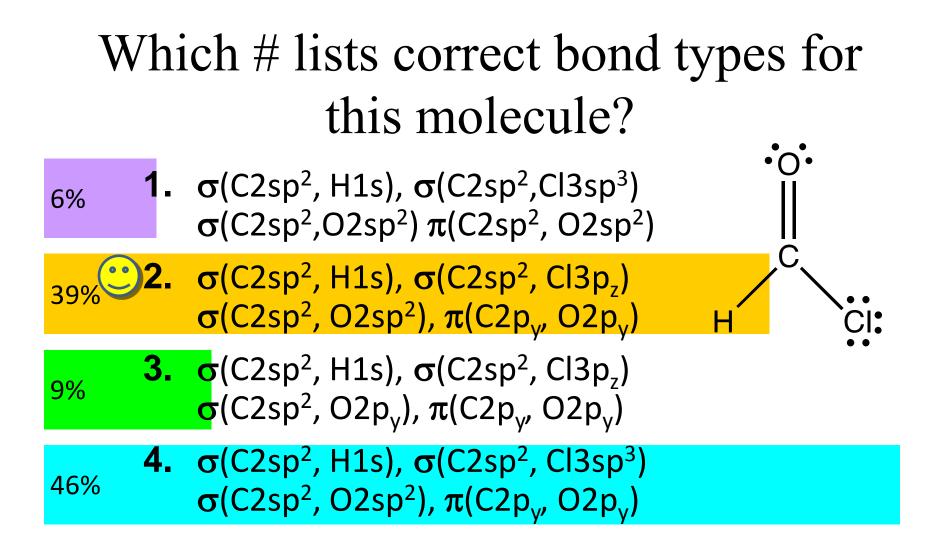


 $^{0\%}$ 6. σ (C2p_y, C2p_y) and π (C2sp², C2sp²)

Clicker Competition Today! Defending Winners: Recitation 13 What is the hybridization of an atom with exactly 2 hybrid orbitals?


- 1. sp
- 2. sp^2
- 3. sp³
- 4. Any of the above, depending on the molecule

What is the hybridization of an atom with exactly 2 hybrid orbitals?



Which # lists correct bond types for this molecule?

- σ(C2sp², H1s), σ(C2sp², Cl3sp³)
 σ(C2sp², O2sp²) π(C2sp², O2sp²)
- **2.** σ(C2sp², H1s), σ(C2sp², Cl3p_z) σ(C2sp², O2sp²), π(C2p_y, O2p_y)

- **3.** σ(C2sp², H1s), σ(C2sp², Cl3p_z) σ(C2sp², O2p_y), π(C2p_y, O2p_y)
- **4.** σ(C2sp², H1s), σ(C2sp², Cl3sp³) σ(C2sp², O2sp²), π(C2p_y, O2p_y)

Is vitamin C a polar or non-polar molecule? Select the best answer below:

- 1. Polar: It is water soluble.
- 2. Polar: It is fat soluble.
- 3. Non-polar: It is water soluble.
- 4. Non-polar: It is fat soluble.

Is vitamin C a polar or non-polar molecule? Select the best answer below:

96% (2)1. Polar: It is water soluble.

- ^{1%} 2. Polar: It is fat soluble.
- ^{1%} 3. Non-polar: It is water soluble.
- ²% 4. Non-polar: It is fat soluble.

What is the hybridization of C_a ?

- 1. sp
- 2. sp²
- 3. sp^3
- 4. C_a is not hybridized.

What is the hybridization of C_a ?

$$2\%$$
 1. sp

 3%
 2. sp²
 95%
 3. sp³
 1%
 4. C_a is not hybridized.

Identify the bond symmetry and hybrid or atomic orbitals that make up the C_d -O bond in vitamin C.

- 1. $\sigma(C2sp^3, O2sp^3)$
- 2. $\sigma(C2sp^3, O2sp^2)$
- 3. $\sigma(C2sp^2, O2sp^3)$
- 4. $\sigma(C2sp^2, O2sp^2)$
- 5. $\sigma(C2sp^3, O2p_z)$

Identify the bond symmetry and hybrid or atomic orbitals that make up the C_d -O bond in vitamin C.

5%1.
$$\sigma(C2sp^3, O2sp^3)$$
2%2. $\sigma(C2sp^3, O2sp^2)$ 85%3. $\sigma(C2sp^2, O2sp^3)$ 7%4. $\sigma(C2sp^2, O2sp^2)$ 2%5. $\sigma(C2sp^3, O2p_z)$

If bonds are stronger in the products than in the reactants, ΔH is:

- 1. negative (exothermic rxn)
- 2. positive (exothermic rxn)
- 3. negative (endothermic rxn)
- 4. positive (endothermic rxn)

If bonds are stronger in the products than in the reactants, ΔH is:

60%	<u> </u>	negative	evot	herm	ic ryn	١
0070		negative	ULUL			J

- ^{20%} 2. positive (exothermic rxn)
- ^{10%} 3. negative (endothermic rxn)
- 4. positive (endothermic rxn)

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.