LECTURE 15

1. Using the following bond enthalpy table, calculate the estimated enthalpy of reaction for the following reaction:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

N-N	163 kJ/mol	N-H	391 kJ/mol
N=N	418 kJ/mol	Н-Н	436 kJ/mol
N≡N	941 kJ/mol		

2. The anaerobic conversion of sucrose $(C_{12}H_{22}O_{11})$ to lactic acid $(CH_3CH(OH)COOH)$ is shown in equation (1). The combustion of sucrose is shown in equation (2).

(1)
$$C_{12}H_{22}O_{11} + H_2O \rightarrow 4CH_3CH(OH)COOH$$

(2)
$$C_{12}H_{22}O_{11} + 12O_2 \rightarrow 12CO_2 + 11H_2O$$

Calculate the standard reaction enthalpy for each reaction using the following enthalpy of formation data: $\Delta H_f^\circ = -694$ kJ/mol for lactic acid, $\Delta H_f^\circ = -2222$ kJ/mol for sucrose, $\Delta H_f^\circ = -393.5$ kJ/mol for CO₂, $\Delta H_f^\circ = -286$ kJ/mol for H₂O.

Additional Book Problems:

Atkins and Jones, Chemical Principles, fourth edition:

Chapter 6, Self-Test 6.18A&B, problem 6.62 & 6.63, 6.86 & 6.87

MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.