The symbol for an element is being changed to "Ah." If the valence electron configuration for its homonuclear diatomic molecule (Ah_2) is $(\sigma 2s)^2(\sigma 2s^*)^2 \pi 2px \pi 2py$ the element's current symbol is:

w

Re

Bh

Os

lr -

Та

Db

Hf

57-71

89-103

56

Ba

Ra

6 Cs

- 1. Li
- 2. Be
- 3. B
- 4. (
- 5. N

6. O 7. F

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses

Au

Rg

Hg

TI.

Pb

Bi

Po

At

117

Uus

Rn

Uuo

	Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/															
Ptable com		57 28 La 18 Lanthanum 2 138.90547	58 28 Ce 19 Cerium 2 140.118	59 2 Pr 2 Praseodymium 2 140.90765	60 28 Nd 152 Neodymium 144.242	61 23 Pm 23 Promethium 23 (145)	62 2 Sm 24 Samarium 150.38	63 25 Eu 25 Europium 2 151.984	64 28 6d 25 Gadolinium 157.25	65 28 Tb 27 Terbium 158.92535	66 28 Dy 28 0 0 0 0 0 0 0 0 0 0 0 0 0	67 28 Ho 29 Holmium 184.93032	68 28 Er 30 Erbium 2 167.259	69 28 Tm 31 Thulium 22 168.93421	70 28 Yb 32 Ytterbium 173.054	71 2 Lu 32 Lutetium 2 174.9888
		89 2 Ac 32 Actinium 9 (227) 2	90 28 Th 18 Thorium 232.03806	91 28 Pa 16 Protactinium 22 231.03588	92 28 U 18 Uranium 9 238.02891	93 28 Np 32 Neptunium 92 (237)	94 28 Pu 32 Plutonium 22 (244) 2	95 28 Americium 225 (243) 25	96 28 Cm 322 Curium 9 (247) 2	97 28 Bk 16 Berkelium 2 (247) 2	98 28 Cf 32 Californium 2 (251)	99 28 18 18 18 19 19 19 19 19 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	100 28 Fm 322 Fermium 28 (257)	101 28 Mcd 32 Mendelevium 2 (258)	102 ² No ¹⁶ Nobelium ² (259) ²	103 2 Lr 32 Lawrencium 2 (282) 2

Pt

Ds

The symbol for an element is being changed to "Ah." If the valence electron configuration for its homonuclear diatomic molecule (Ah_2) is $(\sigma 2s)^2(\sigma 2s^*)^2 \pi 2px \pi 2py$ the element's current symbol is:

If $\Delta G_f^{\circ} < 0$, a compound is relative to its elements.

- 1. stable
- 2. unstable

If $\Delta G_f^{\circ} < 0$, a compound is relative to its elements.

Predict the ΔS value for

 $2\text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$

- 1. $\Delta S = 0 \text{ kJ/ K mol}$
- 2. $\Delta S = +0.334 \text{ kJ/K mol}$
- 3. $\Delta S = -334 \text{ kJ/K mol}$

Predict the ΔS value for

$2\text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$

4% 1. $\Delta S = 0 \text{ kJ/ K mol}$ 87% 2. $\Delta S = +0.334 \text{ kJ/K mol}$ 10% 3. $\Delta S = -334 \text{ kJ/K mol}$

For a reaction with $\Delta H < 0$ and $\Delta S > 0$, the reaction will

- 1. Never be spontaneous
- 2. Always be spontaneous
- 3. Sometimes be spontaneous (depending on reaction temperature)

For a reaction with $\Delta H < 0$ and $\Delta S > 0$, the reaction will

^{5%} 1. Never be spontaneous

6%

- ^{89%} 2. Always be spontaneous
 - 3. Sometimes be spontaneous (depending on reaction temperature)

Based on the orientation shown, how many hydrogen bonds form between A and T bases?

1. 1
2. 2
3. 3
4. 4
5. 0

Based on the orientation shown, how many hydrogen bonds form between A and T bases?

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.