LECTURE 19

1. At $\mathrm{T}=100^{\circ} \mathrm{C}$, the reaction shown below has an equilibrium constant $\mathrm{K}=2.75$.

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Suppose the partial pressure of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ is 2.15 bar, $\mathrm{SO}_{2}(\mathrm{~g})$ is 0 bar, and $\mathrm{Cl}_{2}(\mathrm{~g})$ is 0 bar.
(a) Calculate the reaction quotient Q and state whether the reaction proceeds to the right or the left as equilibrium is approached.
(b) Calculate the partial pressures of each species at equilibrium.
(c) If the volume of the system is increased, will there be net formation or net dissociation of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$?
2. The formation of carbon monoxide from coal is shown by the equation:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

What happens to:
(a) $\left[\mathrm{H}_{2}\right]$ if $\mathrm{H}_{2} \mathrm{O}$ is added?
(b) $[\mathrm{CO}]$ if H_{2} is removed?
(c) $\left[\mathrm{H}_{2}\right]$ if CO is added?
(d) $[\mathrm{CO}]$ if C is added?
3. The formation of ammonia from nitrogen and hydrogen occurs by the following equation:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-92.22 \mathrm{~kJ}
$$

Does the amount of ammonia produced increase, decrease, or remain the same when a mixture of reactants and products at equilibrium undergoes the following changes?
(a) The temperature decreases
(b) The volume is increased
(c) Argon is added
(d) N_{2} is added
4. A mixture of $0.22 \mathrm{~mol} \mathrm{H}_{2}$ and $0.55 \mathrm{~mol} \mathrm{I}_{2}$ in a $100.0-\mathrm{mL}$ container was heated to 700.0 K and allowed to reach equilibrium. Will more HI be formed if that equilibrium mixture is cooled to 298.0 K ?

For the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

$\mathrm{K}=54$ at 700.0 K and 794 at 298.0 K .

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

