LECTURE 21

1. Using the values of K_{b} provided, calculate the pH and $\left[\mathrm{OH}^{-}\right]$for each of the solutions below:
(a) 0.30 M ammonia $\left(\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$
(b) 0.54 M hydroxylamine $\left(\mathrm{K}_{\mathrm{b}}=1.1 \times 10^{-8}\right)$
2. The following reactions are important for buffer creation in biological chemistry labs. Identify the conjugate acid-base pairs.
(a) $\mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{OH})_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{OH})_{3} \mathrm{NH}_{3}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
(b) $\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
(c) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
3. Ketoacidosis is a serious medical condition caused by a build up of ketone bodies. A 0.50 M solution of one of those ketone bodies, acetoacetic acid, is found to have a pH of 1.95 . Determine the K_{a} of acetoacetic acid.

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

