LECTURE 21

1. Using the values of K_{b} provided, calculate the pH and $\left[\mathrm{OH}^{-}\right]$for each of the solutions below:
(a) 0.30 M ammonia $\left(\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$
(b) 0.54 M hydroxylamine $\left(\mathrm{K}_{\mathrm{b}}=1.1 \times 10^{-8}\right)$
(a) $\left[\mathrm{OH}^{-}\right]=2.3 \times 10^{-3} \mathrm{M} ; \mathbf{p H}=11.36$ (or 11.37)
(b) $\left[\mathrm{OH}^{-}\right]=7.7 \times 10^{-5} \mathrm{M} ; \mathbf{p H}=\mathbf{9 . 8 9}$
2. The following reactions are important for buffer creation in biological chemistry labs. Identify the conjugate acid-base pairs.
(a) $\mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{OH})_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{OH})_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
(b) $\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
(c) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
(a) As written, $\mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{OH})_{3} \mathrm{NH}_{2}$ is the base and $\mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{OH})_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})$ is its conjugate acid. $\mathrm{H}_{2} \mathrm{O}$ is the acid and OH^{-}is its conjugate base.
(b) As written, $\mathrm{HPO}_{4}{ }^{2-}$ is the base and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is its conjugate acid. HCl is the acid and Cl^{-}is its conjugate base.
(c) As written, $\mathrm{CH}_{3} \mathrm{COOH}$ is the acid and $\mathrm{CH}_{3} \mathrm{COO}^{-}$is its conjugate base. $\mathrm{H}_{2} \mathrm{O}$ is the base and $\mathrm{H}_{3} \mathrm{O}^{+}$is its conjugate acid.
3. Ketoacidosis is a serious medical condition caused by a build up of ketone bodies. A 0.50 M solution of one of those ketone bodies, acetoacetic acid, is found to have a pH of 1.95 . Determine the K_{a} of acetoacetic acid.
2.6×10^{-4}

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

