Which of the following is true?

1. The pH at the equivalence point is >7 when a weak acid is titrated with a strong base.
2. The pH at the equivalence point depends on the properties of the salt formed.
3. Na^{+}has no effect on pH .
4. HCO_{2}^{-}is a base
5. All of the above are true.

Which of the following is true?

1. The pH at the equivalence point is >7 when a weak acid is titrated with a strong base.
2. The pH at the equivalence point depends on the properties of the salt formed.
3. Na^{+}has no effect on pH .
4. $\mathrm{HCO}_{2}{ }^{-}$is a base
().5. All of the above are true.

Which of the following K_{a} expressions is correct following the addition of 0.100 mol of HCl ?

$$
\text { 1. } \begin{aligned}
& \text { 1. } \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}] \\
& \mathrm{K}_{\mathrm{a}}=(0.400+\mathrm{x})(\mathrm{x}) /(1.10-\mathrm{x}) \\
& \text { 2. } \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}-\mathrm{BCO} /[\mathrm{HCOOH}]\left[\mathrm{H}_{2} \mathrm{O}\right]\right. \\
& \mathrm{K}_{\mathrm{a}}=(0.400+\mathrm{x})(\mathrm{x}) /(1.10-\mathrm{x}) \\
& \text { 3. } \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}] \\
& \mathrm{K}_{\mathrm{a}}=\mathrm{x}^{2} /(1.10-\mathrm{x}) \\
& \text { 4. } \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}] \\
& \mathrm{K}_{\mathrm{a}}=(0.500+\mathrm{x})(\mathrm{x}) /(1.00-\mathrm{x})
\end{aligned}
$$

Which of the following K_{a} expressions is correct following the addition of 0.100 mol of HCl ?
79% 1. $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}]$

$$
\mathrm{K}_{\mathrm{a}}=(0.400+\mathrm{x})(\mathrm{x}) /(1.10-\mathrm{x})
$$

${ }_{11 \%} \quad$ 2. $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}]\left[\mathrm{H}_{2} \mathrm{O}\right]$
$\mathrm{K}_{\mathrm{a}}=(0.400+\mathrm{x})(\mathrm{x}) /(1.10-\mathrm{x})$
3\%
3. $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}]$ $K_{a}=x^{2} /(1.10-x)$
4. $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}]$

$$
\mathrm{K}_{\mathrm{a}}=(0.500+\mathrm{x})(\mathrm{x}) /(1.00-\mathrm{x})
$$

Calculate the molarity of $\mathrm{H}_{3} \mathrm{O}^{+}$.

1. $3.40 \times 10^{-4} \mathrm{~mol} /(0.02500 \mathrm{~L})=1.54 \times 10^{-2} \mathrm{M}$
2. $3.40 \times 10^{-4} \mathrm{~mol} /(0.02500 \mathrm{~L}+0.00100 \mathrm{~L})=$ $1.31 \times 10^{-2} \mathrm{M}$
3. $3.40 \times 10^{-4} \mathrm{~mol} /(0.02500 \mathrm{~L}+0.0184 \mathrm{~L})=$ $7.83 \times 10^{-3} \mathrm{M}$
4. $3.40 \times 10^{-4} \mathrm{~mol} /(0.02500 \mathrm{~L}+0.0184 \mathrm{~L}+$ $0.00100 \mathrm{~L})=7.66 \times 10^{-3} \mathrm{M}$

Calculate the molarity of $\mathrm{H}_{3} \mathrm{O}^{+}$.

1. $3.40 \times 10^{-4} \mathrm{~mol} /(0.02500 \mathrm{~L})=1.54 \times 10^{-2} \mathrm{M}$
2. $3.40 \times 10^{-4} \mathrm{~mol} /(0.02500 \mathrm{~L}+0.00100 \mathrm{~L})=$ $1.31 \times 10^{-2} \mathrm{M}$
3. $3.40 \times 10^{-4} \mathrm{~mol} /(0.02500 \mathrm{~L}+0.0184 \mathrm{~L})=$ $7.83 \times 10^{-3} \mathrm{M}$
4. $3.40 \times 10^{-4} \mathrm{~mol} /(0.02500 \mathrm{~L}+0.0184 \mathrm{~L}+$ $0.00100 \mathrm{~L})=7.66 \times 10^{-3} \mathrm{M}$

$\mathrm{pH}=-\log [0.00421]=2.38$ (to how many sig figs?)

hint: first ask yourself, how many sig figs are in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

1. 2.4
2. 2.38
3. 2
4. 2.375

$\mathrm{pH}=-\log [0.00421]=2.38$ (to how many sig figs?)

hint: first ask yourself, how many sig figs are in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
\begin{aligned}
\text { 1. } & 2.4 \\
\text { 2. } & 2.38 \\
\text { 3. } & 2 \\
; 4 . & 2.375
\end{aligned}
$$

0.75×10^{-3} moles of OH^{-}reacting with 2.5×10^{-3} moles of HCOOH produces how many moles of $\mathrm{HCO}_{2}{ }^{-}$?

1. $2.5 \times 10^{-3}-0.75 \times 10^{-3}=1.75 \times 10^{-3}$
2. 0.75×10^{-3}
3. 2.5×10^{-3}
4. Depends on the K_{b} of HCO_{2}^{-}
5. Depends on the K_{a} of HCO_{2}^{-}
0.75×10^{-3} moles of OH^{-}reacting with 2.5×10^{-3} moles of HCOOH produces how many moles of $\mathrm{HCO}_{2}{ }^{-}$?
$0 \% \quad 1.2 .5 \times 10^{-3}-0.75 \times 10^{-3}=1.75 \times 10^{-3}$
0%) $2.0 .75 \times 10^{-3}$
$0 \% \quad 3.2 .5 \times 10^{-3}$
$0 \% \quad$ 4. Depends on the K_{b} of HCO_{2}^{-}
$0 \% \quad$ 5. Depends on the K_{a} of HCO_{2}^{-}

MIT OpenCourseWare
|http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

