Which of the following is true?

- 1. The pH at the equivalence point is > 7 when a weak acid is titrated with a strong base.
- 2. The pH at the equivalence point depends on the properties of the salt formed.
- 3. Na^+ has no effect on pH.
- 4. HCO_2^- is a base
- 5. All of the above are true.

Which of the following is true?

12%	1.	The pH at the equivalence point is > 7 when
9%		a weak acid is titrated with a strong base.
	2.	The pH at the equivalence point depends on
6%		the properties of the salt formed.
3%	3.	Na ⁺ has no effect on pH.
	4.	HCO_2^- is a base
70%	<u>.</u> 5.	All of the above are true.

Which of the following K_a expressions is correct following the addition of 0.100 mol of HCl?

- 1. $K_a = [H_3O^+][HCOO^-]/[HCOOH]]$ $K_a = (0.400 + x)(x) / (1.10 - x)$
- 2. $K_a = [H_3O^+][HCOO^-]/[HCOOH][H_2O]$ $K_a = (0.400 + x)(x) / (1.10 - x)$
- 3. $K_a = [H_3O^+][HCOO^-]/[HCOOH]]$ $K_a = x^2 / (1.10 - x)$
- 4. $K_a = [H_3O^+][HCOO^-]/[HCOOH]]$ $K_a = (0.500 + x)(x) / (1.00 - x)$

Which of the following K_a expressions is correct following the addition of 0.100 mol of HCl?

79%
1.
$$K_a = [H_3O^+][HCOO^-]/[HCOOH]]_{K_a} = (0.400 + x)(x) / (1.10 - x)$$
11%
2. $K_a = [H_3O^+][HCOO^-]/[HCOOH][H_2O]]_{K_a} = (0.400 + x)(x) / (1.10 - x)$
3%
3. $K_a = [H_3O^+][HCOO^-]/[HCOOH]]_{K_a} = x^2 / (1.10 - x)$
4. $K_a = [H_3O^+][HCOO^-]/[HCOOH]]_{K_a} = (0.500 + x)(x) / (1.00 - x)$

Calculate the molarity of H_3O^+ .

- 1. $3.40 \ge 10^{-4} \mod (0.02500 \text{ L}) = 1.54 \ge 10^{-2} \text{ M}$
- 2. $3.40 \ge 10^{-4} \mod / (0.02500 \ \text{L} + 0.00100 \ \text{L}) =$ $1.31 \ge 10^{-2} \ \text{M}$
- 3. $3.40 \ge 10^{-4} \mod / (0.02500 \ \text{L} + 0.0184 \ \text{L}) =$ 7.83 \times 10^{-3} M
- 4. $3.40 \ge 10^{-4} \mod / (0.02500 \ \text{L} + 0.0184 \ \text{L} + 0.00100 \ \text{L}) = 7.66 \ge 10^{-3} \ \text{M}$

Calculate the molarity of H_3O^+ .

8%	1. $3.40 \ge 10^{-4} \mod (0.02500 \text{ L}) = 1.54 \ge 10^{-2} \text{ M}$
070	2. $3.40 \ge 10^{-4} \mod (0.02500 \ \text{L} + 0.00100 \ \text{L}) =$
33%	1.31 x 10 ⁻² M
5570	3. $3.40 \ge 10^{-4} \mod (0.02500 \text{ L} + 0.0184 \text{ L}) =$
7%	7.83 x 10 ⁻³ M
//0	4. 3.40 x 10 ⁻⁴ mol / (0.02500 L + 0.0184 L +
52%	\checkmark 0.00100 L) = 7.66 x 10 ⁻³ M

pH = -log[0.00421] = 2.38(to how many sig figs?) hint: first ask yourself, how many sig figs are in [H₃O⁺]

2.4
 2.2.38
 2.3
 4.2.375

pH = -log[0.00421] = 2.38(to how many sig figs?) hint: first ask yourself, how many sig figs are in [H₃O⁺]

 0.75×10^{-3} moles of OH⁻ reacting with 2.5 x 10⁻³ moles of HCOOH produces how many moles of HCO₂⁻?

- 1. $2.5 \ge 10^{-3} 0.75 \ge 10^{-3} = 1.75 \ge 10^{-3}$
- 2. 0.75 x 10⁻³
- 3. 2.5 x 10⁻³
- 4. Depends on the K_b of HCO_2^-
- 5. Depends on the K_a of HCO_2^-

 0.75×10^{-3} moles of OH⁻ reacting with 2.5 x 10⁻³ moles of HCOOH produces how many moles of HCO₂⁻?

- 0% 1. $2.5 \ge 10^{-3} 0.75 \ge 10^{-3} = 1.75 \ge 10^{-3}$
- 0% **○**2. 0.75 x 10⁻³
- 0% 3. 2.5 x 10⁻³
- 0% 4. Depends on the K_b of HCO_2^-
- 0% 5. Depends on the K_a of HCO_2^-

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.