To prepare a buffer with a pH of 4.00 using C_6H_5COOH , (pK_a = 4.19) and its conjugate base, what concentration ratio of $C_6H_5COO^-$ to C_6H_5COOH must be used?

Henderson-Hasselbalch equation: $pH = pKa - log ([HA] / [A^-])$ $pH = pKa + log ([A^-] / [HA])$

- 1. $10^{-0.19} = 0.65$ to 1 of [C₆H₅COO⁻] to [C₆H₅COOH]
- 2. $10^{0.19} = 1.6$ to 1 of [C₆H₅COO⁻] to [C₆H₅COOH]
- 3. $10^{4.00} = 1.0 \text{ x } 10^4 \text{ to } 1 \text{ of } [C_6H_5COO^-] \text{ to } [C_6H_5COOH]$
- 4. $10^{4.19} = 1.6 \text{ x } 10^4 \text{ to } 1 \text{ of } [C_6H_5COO^-] \text{ to } [C_6H_5COOH]$

To prepare a buffer with a pH of 4.00 using C_6H_5COOH , (pK_a = 4.19) and its conjugate base, what concentration ratio of $C_6H_5COO^-$ to C_6H_5COOH must be used?

Henderson-Hasselbalch equation: $pH = pKa - log ([HA] / [A^-])$ $pH = pKa + log ([A^-] / [HA])$

53% (1.
$$10^{-0.19} = 0.65$$
 to 1 of $[C_6H_5COO^-]$ to $[C_6H_5COOH]$
36% 2. $10^{0.19} = 1.6$ to 1 of $[C_6H_5COO^-]$ to $[C_6H_5COOH]$
38% 3. $10^{4.00} = 1.0 \times 10^4$ to 1 of $[C_6H_5COO^-]$ to $[C_6H_5COOH]$
4. $10^{4.19} = 1.6 \times 10^4$ to 1 of $[C_6H_5COO^-]$ to $[C_6H_5COOH]$

pH = -log[0.00421] = 2.38(to how many sig figs?) hint: first ask yourself, how many sig figs are in [H₃O⁺]

2.4
 2.2.38
 2.3
 4.2.375

pH = -log[0.00421] = 2.38(to how many sig figs?) hint: first ask yourself, how many sig figs are in [H₃O⁺]

 0.75×10^{-3} moles of OH⁻ reacting with 2.5 x 10⁻³ moles of HCOOH produces how many moles of HCO₂⁻?

- 1. $2.5 \ge 10^{-3} 0.75 \ge 10^{-3} = 1.75 \ge 10^{-3}$
- 2. 0.75 x 10⁻³
- 3. 2.5 x 10⁻³
- 4. Depends on the K_b of HCO_2^-
- 5. Depends on the K_a of HCO_2^-

 $0.75 \ge 10^{-3}$ moles of OH⁻ reacting with 2.5 $\ge 10^{-3}$ moles of HCOOH produces how many moles of HCO₂⁻?

17%1. $2.5 \ge 10^{-3} - 0.75 \ge 10^{-3} = 1.75 \ge 10^{-3}$ 70%2. $0.75 \ge 10^{-3}$ 5%3. $2.5 \ge 10^{-3}$ 5%4.Depends on the K_b of HCO₂⁻3%5.Depends on the K_a of HCO₂⁻

$HCO_2^{-}(aq) + H_2O(l) \Rightarrow HCOOH(aq) + OH^{-}(aq)$

$$H_2CO_2$$
 $K_a = 1.8 \times 10^{-4}$ $pK_a = 3.75$ $HCO_2^ K_b = 5.6 \times 10^{-11}$ $pK_b = 10.25$

Set up your equation using the appropriate ionization constant.

1. $K_a = 1.8 \times 10^{-4} = x^2/(0.0600 - x)$ 2. $K_b = 5.6 \times 10^{-11} = x^2/(0.0600 - x)$ 3. $pK_a = 3.75 = x^2/(0.0600 - x)$ 4. $pK_b = 10.25 = x^2/(0.0600 - x)$

$HCO_2^{-}(aq) + H_2O(l) \Rightarrow HCOOH(aq) + OH^{-}(aq)$

$$H_2CO_2$$
 $K_a = 1.8 \times 10^{-4}$ $pK_a = 3.75$ $HCO_2^ K_b = 5.6 \times 10^{-11}$ $pK_b = 10.25$

Set up your equation using the appropriate ionization constant.

20% 1.
$$K_a = 1.8 \times 10^{-4} = x^2/(0.0600 - x)$$

76% 2. $K_b = 5.6 \times 10^{-11} = x^2/(0.0600 - x)$
3% 3. $pK_a = 3.75 = x^2/(0.0600 - x)$
4. $pK_b = 10.25 = x^2/(0.0600 - x)$

Consider a probe, HA, that is only glows in the deprotonated (A⁻) state.

The pK_a of the probe is 10.0, and the pH of blood is 7.4.

Which of the following is true?

- 1. Most of the probe will be in the deprotonated form (A⁻) form in the bloodstream and glow.
- 2. Most of the probe will be in the protonated (HA) form in the bloodstream and not glow.
- 3. The ratio will be 50% 50% in the bloodstream.
- 4. More information is required.

Consider a probe, HA, that is only glows in the deprotonated (A⁻) state.

The pK_a of the probe is 10.0, and the pH of blood is 7.4.

Which of the following is true?

- 1. Most of the probe will be in the deprotonated form (A^{-}) form in the bloodstream and glow.
- 70%

<mark>3%</mark>

1%

- 2. Most of the probe will be in the protonated (HA) form in the bloodstream and not glow.
- 3. The ratio will be 50% 50% in the bloodstream.
- 4. More information is required.

Which structure do you predict the amino acid tyrosine (Tyr) to have at pH 7.4?

- 1. Structure A
- 2. Structure B
- 3. Structure C
- 4. Structure D
- 5. Structure E

Which structure do you predict the amino acid tyrosine (Tyr) to have at pH 7.4?

What is the oxidation number of nitrogen in N_2O ?

-2
 -1
 0
 +1
 +2

What is the oxidation number of nitrogen in N_2O ?

For the half reaction: $Cr_2O_7^{2-} \rightarrow Cr^{3+}$ Cr is...

- 1. Reduced (it loses electrons)
- 2. Reduced (it gains electrons)
- 3. Oxidized (it loses electrons)
- 4. Oxidized (it gains electrons)

For the half reaction: $Cr_2O_7^{2-} \rightarrow Cr^{3+}$ Cr is...

<mark>25%</mark>	1. Reduced (it loses electrons)
25%	2. Reduced (it gains electrons)
25%	3. Oxidized (it loses electrons)
25%	4. Oxidized (it gains electrons)

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.