To prepare a buffer with a pH of 4.00 using $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, $\left(\mathrm{pK}_{\mathrm{a}}=4.19\right)$ and its conjugate base, what concentration ratio of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ must be used?
Henderson-Hasselbalch equation: $\mathrm{pH}=\mathrm{pKa}-\log \left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right)$

$$
\mathrm{pH}=\mathrm{pKa}+\log ([\mathrm{A}] /[\mathrm{HA}])
$$

1. $10^{-0.19}=0.65$ to 1 of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$
2. $10^{0.19}=1.6$ to 1 of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$
3. $10^{4.00}=1.0 \times 10^{4}$ to 1 of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$
4. $10^{4.19}=1.6 \times 10^{4}$ to 1 of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$

To prepare a buffer with a pH of 4.00 using $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, $\left(\mathrm{pK}_{\mathrm{a}}=4.19\right)$ and its conjugate base, what concentration ratio of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ must be used?

Henderson-Hasselbalch equation: $\mathrm{pH}=\mathrm{pKa}-\log \left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right)$

$$
\mathrm{pH}=\mathrm{pKa}+\log ([\mathrm{A}] /[\mathrm{HA}])
$$

53% © $1.10^{-0.19}=0.65$ to 1 of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$
$36 \% \quad$ 2. $10^{0.19}=1.6$ to 1 of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$
$8 \% \quad$ 3. $10^{4.00}=1.0 \times 10^{4}$ to 1 of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$
$3 \% \quad$ 4. $10^{4.19}=1.6 \times 10^{4}$ to 1 of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$

$\mathrm{pH}=-\log [0.00421]=2.38$ (to how many sig figs?)

hint: first ask yourself, how many sig figs are in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

1. 2.4
2. 2.38
3. 2
4. 2.375

$\mathrm{pH}=-\log [0.00421]=2.38$ (to how many sig figs?)

hint: first ask yourself, how many sig figs are in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
\begin{aligned}
& \text { 1. } 2.4 \\
&;) 2 . 2.38 \\
& \text { 3. } 2 \\
& \text { 4. } 2.375
\end{aligned}
$$

0.75×10^{-3} moles of OH^{-}reacting with 2.5×10^{-3} moles of HCOOH produces how many moles of $\mathrm{HCO}_{2}{ }^{-}$?

1. $2.5 \times 10^{-3}-0.75 \times 10^{-3}=1.75 \times 10^{-3}$
2. 0.75×10^{-3}
3. 2.5×10^{-3}
4. Depends on the K_{b} of HCO_{2}^{-}
5. Depends on the K_{a} of HCO_{2}^{-}
0.75×10^{-3} moles of OH^{-}reacting with 2.5×10^{-3} moles of HCOOH produces how many moles of $\mathrm{HCO}_{2}{ }^{-}$?
$17 \% \quad 1$. $2.5 \times 10^{-3}-0.75 \times 10^{-3}=1.75 \times 10^{-3}$
70% © 2 . 0.75×10^{-3}
$5 \% \quad 3.2 .5 \times 10^{-3}$
$5 \% \quad$ 4. Depends on the K_{b} of HCO_{2}^{-}
$3 \% \quad$ 5. Depends on the K_{a} of HCO_{2}^{-}

$\mathrm{HCO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HCOOH}^{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\begin{array}{lll}
\mathrm{H}_{2} \mathrm{CO}_{2} & \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-4} & \mathrm{pK}_{\mathrm{a}}=3.75 \\
\mathrm{HCO}_{2}^{-} & \mathrm{K}_{\mathrm{b}}=5.6 \times 10^{-11} & \mathrm{pK}_{\mathrm{b}}=10.25
\end{array}
$$

Set up your equation using the appropriate ionization constant.

$$
\begin{aligned}
& \text { 1. } \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}=\mathrm{x}^{2} /(0.0600-\mathrm{x}) \\
& \text { 2. } \mathrm{K}_{\mathrm{b}}=5.6 \times 10^{-11}=\mathrm{x}^{2} /(0.0600-\mathrm{x}) \\
& \text { 3. } \mathrm{pK}_{\mathrm{a}}=3.75=\mathrm{x}^{2} /(0.0600-\mathrm{x}) \\
& \text { 4. } \mathrm{pK}_{\mathrm{b}}=10.25=\mathrm{x}^{2} /(0.0600-\mathrm{x})
\end{aligned}
$$

$\mathrm{HCO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HCOOH}^{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\begin{array}{lll}
\mathrm{H}_{2} \mathrm{CO}_{2} & \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-4} & \mathrm{pK}_{\mathrm{a}}=3.75 \\
\mathrm{HCO}_{2}^{-} & \mathrm{K}_{\mathrm{b}}=5.6 \times 10^{-11} & \mathrm{pK}_{\mathrm{b}}=10.25
\end{array}
$$

Set up your equation using the appropriate ionization constant.

20%	1. $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}=\mathrm{x}^{2} /(0.0600-\mathrm{x})$
76%	2. $\mathrm{K}_{\mathrm{b}}=5.6 \times 10^{-11}=\mathrm{x}^{2} /(0.0600-\mathrm{x})$
3%	3. $\mathrm{pK}_{\mathrm{a}}=3.75=\mathrm{x}^{2} /(0.0600-\mathrm{x})$
2%	4. $\mathrm{pK}_{\mathrm{b}}=10.25=\mathrm{x}^{2} /(0.0600-\mathrm{x})$

Consider a probe, HA, that is only glows in the deprotonated (A^{-}) state.

The pK_{a} of the probe is 10.0 , and the pH of blood is 7.4.

Which of the following is true?

1. Most of the probe will be in the deprotonated form (A^{-}) form in the bloodstream and glow.
2. Most of the probe will be in the protonated (HA) form in the bloodstream and not glow.
3. The ratio will be $50 \% 50 \%$ in the bloodstream.
4. More information is required.

Consider a probe, HA, that is only glows in the deprotonated (A^{-}) state.

The pK_{a} of the probe is 10.0 , and the pH of blood is 7.4.
Which of the following is true?
25% 1. Most of the probe will be in the deprotonated form $\left(\mathrm{A}^{-}\right)$form in the bloodstream and glow.
$70 \%)^{2}$. Most of the probe will be in the protonated (HA) form in the bloodstream and not glow.
3. The ratio will be $50 \% 50 \%$ in the bloodstream.
4. More information is required.

Which structure do you predict the amino acid tyrosine (Tyr) to have at pH 7.4 ?

1. Structure A
2. Structure B
3. Structure C
4. Structure D
5. Structure E

Which structure do you predict the amino acid tyrosine (Tyr) to have at pH 7.4 ?

What is the oxidation number of nitrogen in $\mathrm{N}_{2} \mathrm{O}$?

1. -2
2. -1
3. 0
4. +1
5. +2

What is the oxidation number of nitrogen in $\mathrm{N}_{2} \mathrm{O}$?

$$
\begin{aligned}
& \text { 1. }-2 \\
& \text { 2. }-1 \\
& \text { 3. } 0
\end{aligned}
$$

$$
\text { 4. }+1
$$

$$
\text { 5. }+2
$$

For the half reaction:

$$
\begin{gathered}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+} \\
\mathrm{Cr} \text { is... }
\end{gathered}
$$

1. Reduced (it loses electrons)
2. Reduced (it gains electrons)
3. Oxidized (it loses electrons)
4. Oxidized (it gains electrons)

For the half reaction:

$$
\begin{gathered}
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \rightarrow \mathrm{Cr}^{3+} \\
\mathrm{Cr} \text { is... }
\end{gathered}
$$

25\% 1. Reduced (it loses electrons) 25\% © 2. Reduced (it gains electrons)
25\% 3. Oxidized (it loses electrons)
25\% 4. Oxidized (it gains electrons)

MIT OpenCourseWare
|http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

