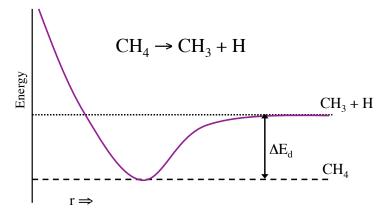
5.111 Lecture Summary #15

Readings for today: Sections 7.13, 7.15, 7.16, 7.17, 7.18, and 7.20 (Sections 6.13, 6.15, 6.16, 6.17, 6.18, and 6.20 in 4th ed) – The Enthalpy of Chemical Change.

Read for Lecture #16: Section 8.1 (Section 7.1 in 4^{th} ed) – Spontaneous Change, Sections 8.2 and 8.8 (Sections 7.2 and 7.8 in 4^{th} ed) – Entropy, Sections 8.12, 8.13, 8.15 (Sections 7.12, 7.13, 7.15 in 4^{th} ed) – Free Energy.

Announcements: Extra problems for exam 2 will be posted today.

Topics:	Introduction to Thermodynamics	
-	A. Bond energy/bond enthalpy (ΔH_B)	
	B. Enthalpies of reaction (ΔH_r)	
	C. Methods to calculate ΔH_r	


INTRODUCTION TO THERMODYNAMICS

In the study of a given reaction, **thermodynamics** deals with the ______ associated with the reaction, while **kinetics** deals with the ______

of the reaction (lecture 30).

A. BOND ENERGY/ BOND ENTHALPY

Bond (dissociation) energy, ΔE_{d} , is the energy required to break a bond.

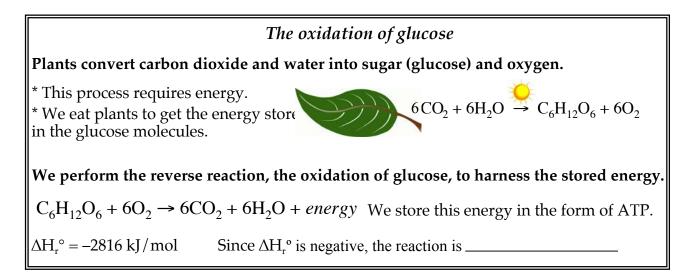
 ΔH_{B} , bond ______, is the change in heat accompanying the dissociation of a bond (measured at constant pressure P).

 $\Delta H = \Delta E + \Delta (PV)$

For gases, $\Delta H \& \Delta E$ differ by ______ %. For liquids and solids, negligible difference.

 $\Delta H_{B^{o}} =$ ______ bond enthalpy. Indicates reactants and products are in the standard state (pure form) at 1 bar for gases.

Bond enthalpies for C—H bonds (all gases)


$CH_4 \rightarrow$	$CH_3 + H$	$\Delta H_{\rm B}^{\circ} = +438 \text{ kJ/mol}$
$C_2H_6 \rightarrow$	$C_2H_5 + H$	$\Delta H_{\rm B}^{\circ} = +410 \text{ kJ/mol}$
$CHF_3 \rightarrow$	$CF_3 + H$	$\Delta H_{\rm B}^{\circ} = +429 \text{ kJ/mol}$
$CHCl_3 \rightarrow$	$CCl_3 + H$	$\Delta H_{\rm B}^{\circ} = +380 \text{ kJ/mol}$
$CHBr_3 \rightarrow$	$CBr_3 + H$	$\Delta H_{\rm B}^{\circ} = +377 \text{ kJ/mol}$

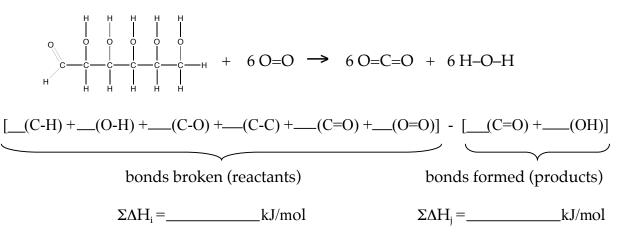
The C-H bond enthalpies listed above are all within 8% of the **mean bond enthalpy** (_____kJ/mol) for C-H bonds.

What is the importance of bond enthalpies? The difference between bond enthalpies in products and reactants gives an estimate of the **enthalpy of reaction** ΔH_r° .

B. ENTHALPIES OF REACTION

 $\Delta H_r^{\circ} = Standard bond enthalpy for a reaction Negative <math>\Delta H_r^{\circ}$: exothermic reaction Positive ΔH_r° : endothermic reaction

Thermodynamics tells us that this reaction is exothermic, so heat should be released. But kinetics tells us that the reaction is _____(so we _____feel the heat when we expose sugar to oxygen). In our bodies, catalysts called enzymes speed up this reaction.


C. THERE ARE MULTIPLE WAYS TO CALCULATE ΔH_r° :

i. Bond enthalpies ($\Delta H \text{ or } \Delta H_B$) $\Delta H_r^\circ = \Sigma \Delta H_B (\text{reactants}) - \Sigma \Delta H_B (\text{products})$ ii. Standard enthalpies of formation (ΔH_f°) $\Delta H_r^\circ = \Sigma \Delta H_f^\circ (\text{products}) - \Sigma \Delta H_f^\circ (\text{reactants})$ iii. Hess's law (combining reaction enthalpies)

i. Calculating ΔH_r° from bond enthalpies (ΔH_B°)

 $\Delta H_r^{\circ} = \Sigma \Delta H_B$ (reactants) - $\Sigma \Delta H_B$ (products)

If bonds stronger in products than reactants, ΔH_r is ______(____). If bonds stronger in reactants than products, ΔH_r is ______(endothermic).

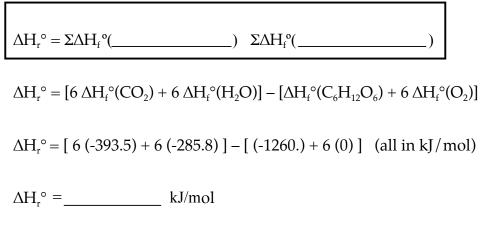
 $\Delta H_{r \ calculated}^{\circ} = 12,452 \ kJ/mol - 15,192 \ kJ/mol = ____ . \ kJ/mol \ of \ C_6 H_{12} O_6$

 $\Delta H_r^{\circ}_{experimental} = -2,816 \text{ kJ/mol}$

Agreement within 3%, which is very good considering that <u>mean</u> bond enthalpies were used.

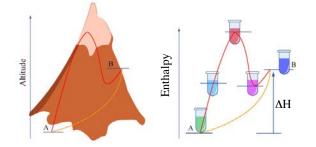
ii. Calculating ΔH_r° from HEAT OF FORMATION

More accurate approach...use heat of formation: ΔH_{f}°


 $\Delta H_{f}^{\circ} = \Delta H_{r}^{\circ}$ for forming 1 mol of compound from pure elements in their most stable form at the standard state = 1 bar and 298.15 K

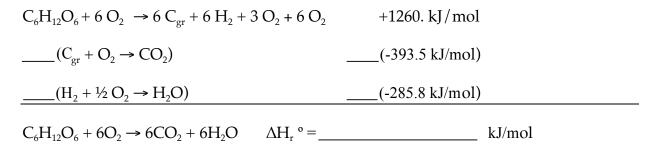
 $\begin{array}{ll} H_2(g) \ + \ (1/2)O_2(g) \ \rightarrow \ H_2O(l) \\ \mbox{stable form} & \mbox{stable form} \\ \mbox{of hydrogen} & \mbox{of oxygen} \end{array} \qquad \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ H_2O(l) \\ \Delta H^\circ = -\ 393.5 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \mbox{stable form} & \mbox{stable form} \\ \mbox{of oxygen} \end{array} \qquad \Delta H^\circ = -\ 393.5 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 393.5 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \mbox{of oxygen} \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \mbox{of oxygen} \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \mbox{of oxygen} \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ O_2(g) \\ \mbox{of oxygen} \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ O_2(g) \\ \mbox{of oxygen} \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ O_2(g) \\ \mbox{of oxygen} \\ \mbox{of oxygen} \\ \mbox{of oxygen} \\ \mbox{of oxygen} \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ O_2(g) \\ \mbox{of oxygen} \\ \mbox{of oxy$

The heat of formation of an element in its most stable state is_____.


$$3O_2(g) + 6C_{gr} + 6H_2(g) \rightarrow C_6H_{12}O_6$$
 $\Delta H_f^{\circ} = _$. kJ/mol for $C_6H_{12}O_6$

We can calculate ΔH_r° for glucose oxidation (or any other reaction) using ΔH_f° .

This is the same value as experiment because ΔH_f° is specific to a compound.


iii. Calculating a ΔH_r° from other ΔH° s using HESS'S LAW Enthalpy is a "STATE" FUNCTION, which means ΔH is ______ of path.

Hess's Law: If two or more chemical equations are added to give another chemical equation, corresponding ______ must be added.

Example:

Calculate the ΔH_r° for glucose oxidation ($C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$), given the following ΔH° values:

Thus, we have three ways to calculate ΔH_r° , from 1. bond enthalpies 2. Heat of formation 3. Hess's law

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.