Reading for Today: Sections 10.9-10.13 (Sections 9.9-9.13 in $4^{\text {th }}$ ed.)
Reading for Lecture \# 20: Sections 9.8-9.13 (8.8-8.13 same in $4^{\text {th }}$ ed.) on solubility;
Sections 11.1 - 11.2, 11.4-11.6 (10.1-10.2, 10.4-10.6 in $4^{\text {th }} \mathrm{ed}$.) on acids and bases.

Topics: I. External effects on K (Le Châtelier's Principle) continued
II. Temperature dependence of K
III. Applications of Le Le Châtelier's Principle
IV. Sig figs for logs

I. EXTERNAL EFFECTS ON K (LE CHÂTELIER'S PRINCIPLE) CONTINUED

A. CHANGING THE VOLUME OF A GASEOUS SYSTEM

 pressure.

I' (\$ / ${ }^{*}$ \$ 6ㄱ \$:

Le Châtelier's principle predicts that the system would respond, if possible, in such a way as to reduce the total pressure.

Example $2 \mathrm{P}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{P}_{4}(\mathrm{~g})$

i) A decrease in volume shifts the reaction to the right (toward product).

This change occurs because for every 2 molecules of P_{2} consumed only 1 molecule of P_{4} is formed.

A shift to the right reduces the total pressure, partially compensating for the external stress of the volume change.

Now consider in terms of Q and K.
Suppose the volume is decreased by a factor of 2 at constant temperature.
This change will increase the partial pressure of P_{2} by 2 and of P_{4} by 2, initially.

$$
\mathrm{Q}=\frac{\mathrm{P}_{\mathrm{P}_{4}}}{\left(\mathrm{P}_{\mathrm{P}_{2}}\right)^{2}}=\frac{2}{2^{2}}=\frac{1}{2}
$$

Reaction proceeds in forward direction (toward products) until $\mathrm{Q}=\mathrm{K}$ again.
ii) An increase in volume shifts the reaction to the left (toward reactants).
 Thus a shift of the reaction toward reactants, increases the total pressure.

B. ADDING INERT GAS

Case 1) For $2 \mathrm{P}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{P}_{4}$, what happens if an inert gas is added to the container increasing the total pressure at constant temperature?
\$ QVZ HU \qquad Why?
Q depends on the partial pressure of P_{2} and P_{4} gases and the partial pressures do not change here.

Review Partial Pressure: The partial pressure is the pressure that each gas would exert if it alone were present in the container.

O_{2}

N_{2}

mixture of O_{2} and N_{2}

$$
\mathrm{P}_{\mathrm{A}}=\mathrm{n}_{\mathrm{A}} \quad \mathrm{RT}
$$

V

$$
\mathrm{P}_{\mathrm{tot}}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+\text { etc }=\left(\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}+\mathrm{n}_{\mathrm{C}}+\text { etc }\right) \mathrm{RT}=\mathrm{n}_{\text {tot }} \mathrm{RT}
$$

V

V

When the total pressure increases due to the addition of an inert gas, the partial pressure of each gas is unchanged. When the partial pressure is the same, Q doesn't change. When Q doesn't change, there is no shift.

Case 2) For $2 \mathrm{P}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{P}_{4}(\mathrm{~g})$, what happens if an inert gas is added to the container but the total pressure and temperature are kept constant?

Answer: the reaction
For the pressure to be kept constant, the \qquad of the container must have increased. And when \qquad increases, partial pressures decrease, causing this reaction to \qquad .

C. CHANGING THE TEMPERATURE

Raising the temperature of an equilibrium mixture by adding heat causes the reaction to shift such that some of the heat is absorbed.

Le Châtelier's principle is consistent with this observation.
Raising the temperature of an exothermic reaction favors the formation of \qquad .

Heat produced
Reactants \Longrightarrow Products (exothermic direction)
Heat absorbed
Reactants Products (endothermic direction)

Raising the temperature of an endothermic reaction favors the formation of products.

Reactants $\xrightarrow{\text { Heat absorbed }}$ Products | (endothermic direction) |
| :---: |
| Reactants produced | Products (exothermic direction)

Here $\Delta \mathrm{H}$ is the predictive tool

Example $\quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-197.78 \mathrm{~kJ} / \mathrm{mol}$
If heat is added, which direction will the reaction go?

II. TEMPERATURE DEPENDENCE OF K

K can change with temperature and reaction rates can change with temperature.
$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ} \quad$ or $\quad \ln \mathrm{K}=-\Delta \mathrm{H}^{\circ} / \mathrm{RT}+\Delta \mathrm{S}^{\circ} / \mathrm{R}$
Since it is reasonable to assume that $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ are approximately independent of temperature over the range of temperatures of interest, K changes with a change in T.

Consider a reaction carried out at Temperatures T_{1} and T_{2} :
$\ln K_{2}=-\Delta H^{\circ} / R T_{2}+\Delta S^{\circ} / R \quad$ and $\quad \ln K_{1}=-\Delta H^{\circ} / R T_{1}+\Delta S^{\circ} / R$

Subtracting the second equation from the first gives:

$$
\ln \left[\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right]=-\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right] \quad \text { Van't Hoff Equation }
$$

$\ln \left[\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right]=\frac{-\Delta \mathrm{H}^{\circ}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right] \quad$ Van't Hoff Equation
If $\Delta \mathrm{H}^{\circ}<0$
$\mathrm{T}_{2}>\mathrm{T}_{1}$ then $(-)(-)(-)=(-) \quad \mathrm{K}_{1}>\mathrm{K}_{2}$
$\mathrm{T}_{2}<\mathrm{T}_{1}$ then $(-)(-)(+)=(+) \quad \mathrm{K}_{1}<\mathrm{K}_{2}$
If $\Delta \mathrm{H}^{\circ}>0$
$\mathrm{T}_{2}>\mathrm{T}_{1}$ then $(-)(+)(-)=\quad \mathrm{K}_{1} \quad \mathrm{~K}_{2}$
$\mathrm{T}_{2}<\mathrm{T}_{1}$ then $(-)(+)(+)=\quad \mathrm{K}_{1} \quad \mathrm{~K}_{2}$

III. APPLICATIONS OF LE CHÂTELIER'S PRINCIPLE

A. MAXIMIZING THE YIELD OF A REACTION

The Harber-Bosch Process.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad$ exothermic reaction
$1.6 \times 10^{10} \mathrm{~kg}$ of ammonia produced by this process per year in US
low temperature favors products, good but low temperature slows rate, bad Compromise temperature used is $500^{\circ} \mathrm{C}$.

What are other ways to drive the reaction toward products?

All living things need nitrogen, and there is lots of N_{2} in the air, but it is hard to split N_{2}. Thus, we use the environmentally unfriendly Harber-Bosch Process, but bacteria can catalyze the same reaction using an enzyme called nitrogenase.

B. LE CHÂTELIER AND HEMOGLOBIN

The combination of oxygen with hemoglobin (Hb), which carries oxygen through the blood, can be represented by

$$
\mathrm{Hb}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{HbO}_{2}(\mathrm{aq})
$$

where HbO_{2} is oxyhemoglobin (oxygen bound to hemoglobin)
At an altitude of 3 km the partial pressure of oxygen is only about 0.14 atm , compared to 0.2 atm at sea level.

According to Le Châtelier's principle, the equilibrium would be shifted to the left. This change causes hypoxia.

How can the body compensate?

$$
\mathrm{Hb}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{HbO}_{2}(\mathrm{aq})
$$

IV. SIG FIG RULES FOR LOGS AND EXPONENTIALS (PAGE A5 IN BOOK)

$\log \left(7.310 \times 10^{3}\right)=3.8639(4$ sig figs in mantissa $)$
$\log \left(7.310 \times 10^{23}\right)=23.8639$ (4 sig figs in mantissa)
The characteristic (left of decimal point) is determined solely by the location of the decimal point in the number and not by the number's precision, it is not included when counting sig figs. The mantissa (right of decimal point) should be written with as many sig figs as the original number.
$10^{0.389}=2.45$ (3 sig figs in answer)
$10^{12.389}=2.45 \times 10^{12}(3$ sig figs in answer $)$

There are no simple rules for assessing significant figures for natural logarithms. One should convert \ln to \log and then use \log rules, but for the purposes of this course, just use log sig fig rules for \ln too.

Let's try an example

MIT OpenCourseWare
http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

