Reading for Today: Sections 11.7-11.9, 11.11-11.12 (10.7-10.9, $10.11-10.12$ in $4^{\text {th }}$ ed.)
Reading for Lecture \# 22: Sections 11.13, 11.18-11.19, 12.1-12.3 (10.13, 10.18-10.19, 11.111.3 in $4^{\text {th }}$ ed.)

Topics: I. Definitions and Relationships between $\mathrm{pK}_{\mathrm{w}}, \mathrm{pH}$, and pOH
II. Strengths of Acids and Bases
III. Equilibrium Acid-Base Problems (Weak Acids and Weak Bases)

## I. Definitions and Relationships between $\mathrm{pK}_{\mathrm{w}} \mathrm{pH}$, and pOH

Autoionization of water and definition of $\mathrm{pK}_{\underline{\mathrm{w}}}$

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \text { or } \underset{\text { acid }}{\mathrm{H}_{2} \mathrm{O}}(\mathrm{l})+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}}(\mathrm{l}) \rightleftharpoons \underset{\text { acid }}{\mathrm{H}_{3} \mathrm{O}^{+}}(\mathrm{aq})+\underset{\text { base }}{\mathrm{OH}^{-}(\mathrm{aq})}
$$

How much $\mathrm{H}_{2} \mathrm{O}$ is in a glass of water?
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \Delta \mathrm{G}^{\circ}=+79.89 \mathrm{~kJ} / \mathrm{mol}$
$\ln \mathrm{K}=-\Delta \mathrm{G}^{\circ} / \mathrm{RT}=\frac{-\left(7.989 \times 10^{4} \mathrm{~J} / \mathrm{mol}\right)}{(8.3145 \mathrm{~J} / \mathrm{Kmol})(298.0 \mathrm{~K})}=-32.24$
$\mathrm{K}=$ $\qquad$ at 298 K

This very $\qquad$ value indicates that only a small proportion of water molecules are ionized. Concentration of ions due to autoionization of water is very low, about 1 molecule in 200 million.
$\mathrm{K}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad$ This K is called $\mathrm{K}_{\mathrm{w}}$.
Because $K_{w}$ is an equilibrium constant, the product of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$is always $1.0 \times 10^{-14}$ at 298 K .

Note: Because the concentration of the solvent, $\mathrm{H}_{2} \mathrm{O}$, does not change significantly in a dilute solution, it does not enter the equilibrium expression. The solvent, water, is very nearly pure, and pure liquids and pure solids are not included in equilibrium expressions.

Definitions of pH and pOH
pH Function: $\quad \mathrm{pH}=-\log$
pOH Function:

$$
\mathrm{pOH}=-\log
$$

Relationship between $\mathrm{pH}, \mathrm{pOH}$ and $\mathrm{pK}_{w}$
$\mathrm{K}_{\mathrm{w}} \quad=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$
$\log \mathrm{K}_{\mathrm{w}}=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\log \left[\mathrm{OH}^{-}\right]$
$-\log \mathrm{K}_{\mathrm{w}}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{pK}_{\mathrm{w}}=\ldots+\square=14.00$ at $25^{\circ} \mathrm{C}$

## II. Strength of Acids and Bases

pH of pure water $\mathrm{pH}=-\log \left(1.0 \times 10^{-7}\right)=7.00$
pH of an acid solution is $\qquad$
pH of an base solution is $\qquad$


EPA defines waste as "corrosive" if the pH is lower than 3.0 or higher than 12.5 .

Demo: let's check out the acidity or basicity of common household products.

## Acid Strength

$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
The equilibrium constant for an acid in water is termed $\mathrm{K}_{\mathrm{a}}$ (the acid ionization constant)
For this reaction, $K_{a}=$

The value for $\mathrm{K}_{\mathrm{a}}$ is $1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. This small value tells us that only a small number of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules donate their proton when dissolved in water (weak acid).

Generic expressions for acids in water:

$$
\begin{array}{ll}
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) & \text { ACID }(\mathrm{HA}) \text { IN WATER } \\
\mathrm{BH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) & \text { ACID }\left(\mathrm{BH}^{+}\right) \text {IN WATER }
\end{array}
$$

A strong acid has a $K_{a}>1$ which means that the acid ionizes almost $\qquad$ .

A weak acid has a $K_{\mathrm{a}}<1$. The reaction with water does not produce many ionized species before equilibrium is reached.
$p K_{a}=-\log K_{a}$
The lower the value of $\mathrm{K}_{\mathrm{a}}$, the higher the value of $\mathrm{pK}_{\mathrm{a}}$.
The higher the $\mathrm{pK}_{\mathrm{a}} \square \mathrm{KH}$

A few $\mathrm{K}_{\underline{a}}$ and $\mathrm{pK}_{\underline{a}}$ values at $25^{\circ} \mathrm{C}$

| ACID | $\mathbf{K}_{\mathrm{a}}$ | $\mathbf{p K}_{\mathrm{a}}$ |
| :--- | :--- | :--- |
| HI | $\sim 10^{11}$ | $\sim-11$ |
| HCl | $\sim 10^{7}$ | $\sim-7$ |
| $\mathrm{H}_{2} \mathrm{SO}_{3}$ | $1.54 \times 10^{-2}$ | 1.81 |
| HCOOH | $1.77 \times 10^{-4}$ | 3.75 |

## Base Strength

$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
The equilibrium constant for a base in water is termed $\mathrm{K}_{\mathrm{b}}$ (the base ionization constant)

For this reaction, $\mathrm{K}_{\mathrm{b}}=$
$\mathrm{K}_{\mathrm{b}}$ is $1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. This small value tells us that only a small amount of $\mathrm{NH}_{3}$ ionizes to $\mathrm{NH}_{4}^{+}$and $\mathrm{OH}^{-}$in solution. A strong base reacts essentially completely to give $\mathrm{OH}^{-}$ (aq) when put in water. $\mathrm{NH}_{3}$ is not a strong base. It is a moderately weak base.

Generic expressions for bases in water:

$$
\begin{array}{ll}
\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) & \text { BASE }(\mathrm{B}) \text { IN WATER } \\
\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) & \text { BASE }\left(\mathrm{A}^{-}\right) \text {IN WATER }
\end{array}
$$

A strong base ionizes almost completely to give $\mathrm{OH}^{-}$in water.
$p K_{b}=-\log \mathrm{K}_{\mathrm{b}}$
larger $\mathrm{K}_{\mathrm{b}}$, stronger base


The stronger the acid, the
$\qquad$ its conjugate base.

The stronger the base, the
$\qquad$ its conjugate acid.

Why this relationship? $\mathrm{K}_{\mathrm{a}}$ and $\mathrm{K}_{\mathrm{b}}$ are related and so are $\mathrm{pK}_{\mathrm{a}}$ and $\mathrm{pK}_{\mathrm{b}}$.
$\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$
$\log \mathrm{K}_{\mathrm{a}}+\log \mathrm{K}_{\mathrm{b}}=\log \mathrm{K}_{\mathrm{w}}$ or
$\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}=14.00$


An acid/base and its conjugate base/acid can't both be strong.
Strong acids and bases push drive the reaction toward complete ionization:

$$
\begin{aligned}
& \text { Strong acid } \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
& \text { Strong base } \mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

Whereas weak acids and bases are in equilibrium with their conjugates bases and acids:

$$
\begin{aligned}
& \text { Weak acid } \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
& \text { Weak base } \mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

## III. Equilibrium Acid-Base Problems

1. weak acid in water salt in water
2. weak base in water
3. strong acid in water
4. strong base in water
5. buffer

## Equilibrium Involving Weak Acids

Example: Vitamin C (ascorbic acid, $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}$ ) has a $\mathrm{K}_{\mathrm{a}}$ of $8.0 \times 10^{-5}$. Calculate the pH of a solution made by dissolving 500. mg in $100 . \mathrm{mL}$ of water.
$0.500 \mathrm{~g} \times 1 \mathrm{~mol} / 176.126 \mathrm{~g}=2.84 \times 10^{-3} \mathrm{~mol}$
$2.84 \times 10^{-3} \mathrm{~mol} / 0.100 \mathrm{~L}=0.0284 \mathrm{M}$
$\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}^{-}(\mathrm{aq})$
initial molarity
change in molarity

| $\mathrm{HC}_{6} \mathrm{H}_{2} \mathrm{O}_{6}$ | $\mathrm{H}_{3} \mathrm{O}^{+}$ | $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{6}{ }_{6}^{-}$ |
| :--- | :--- | ---: |
| 0.0284 | 0 | 0 |
| -x | +x | +x |

equilibrium molarity
$\mathrm{K}_{\mathrm{a}}=8.0 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}^{-}\right]}{\left[\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}\right]}=\frac{\mathrm{x}^{2}}{0.0284-\mathrm{x}}$
If $\mathrm{x} \ll 0.0284$, then $(0.0284-\mathrm{x}) \sim=0.0284$.
$\mathrm{K}_{\mathrm{a}}=8.0 \times 10^{-5}=\frac{\mathrm{x}^{2}}{0.0284}$
$x=0.00151$ (really 2 sf, but carry extra)

Check assumption. Is $0.0284-0.00151 \sim=0.0284$ ?
You can use assumption if x is less than $\mathbf{5 \%}$ of the value in question (This $5 \%$ policy holds for any chemical equilibrium problem, not just acid-base).

Here $(0.00151 / 0.0284) \times 100 \%=5.3 \%$ ( more than $5 \%)$, so must use the quadratic equation.

This value is sometimes called the percentage ionized or percentage deprotonated.
Using quadratic eq, $x=0.00147$ (really 2 sf)
$\mathrm{pH}=-\log \left[1.47 \times 10^{-3}\right]=$

## Equilibrium Involving Weak Bases

Example: $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{b}}$ is $1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.
Calculate the pH of a $0.15 \mathrm{M} \mathrm{NH}_{3}$ solution at $25^{\circ} \mathrm{C}$.
initial molarity
 change in molarity equilibrium molarity
base
ionization $\left(\mathrm{K}_{\mathrm{b}}\right)=\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]=$ constant

Check assumption:
$\mathrm{pOH}=-\log [\mathrm{OH}-]=-\log [0.001 \underline{6} 4]=2.79$
$\mathrm{pH}=$

MIT OpenCourseWare
http://ocw.mit.edu

### 5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

