Reading for Today: Sections 11.13, 11.18-11.19, 12.1-12.3 in $5^{\text {th }}$ ed. (10.13, 10.18-10.19, 11.1-11.3 in $4^{\text {th }}$ ed.)
Reading for Lecture \# 23: Sections 12.4-12.6 in $5^{\text {th }}$ ed. ($4^{\text {th }}$ ed: 11.4-11.6)
Topics: I. pH of salt solutions
II. Buffers!

I. pH of salt solutions

A salt is formed by the neutralization of an acid by a base.
$\mathrm{HCl}+\mathrm{NaOH}$ gives NaCl and $\mathrm{H}_{2} \mathrm{O}$
The pH of salt in water is not always \qquad .

Salts that contain the conjugate acids of weak bases produce acidic aqueous solutions; so do salts that contain small, highly charged metal cations (e.g. Fe^{3+}).
(Note: all Group 1 and 2 metals (e.g. $\mathrm{Li}^{+}, \mathrm{Ca}^{+2}$) and all metal cations with charge +1 (e.g. Ag^{+1}) are neutral.)

Salts that contain the conjugate bases of weak acids produce basic aqueous solution.

1) $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ will produce $\mathrm{a}(\mathrm{n})$ \qquad solution.
$\mathrm{NH}_{4}^{+} \quad$ Is NH_{4}^{+}a conjugate acid of a weak base and therefore a weak acid? $\mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}$

Is NH_{3} a weak base? $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$
$\mathrm{Cl}^{-} \quad$ Is Cl^{-}a conjugate base of a weak acid and therefore a weak base?

Is HCl a weak acid? $\mathrm{K}_{\mathrm{a}}=10^{7}$
2) $\mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq})$ will produce $\mathrm{a}(\mathrm{n})$ \qquad solution. K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.76×10^{-5}
$\mathrm{Na}^{+} \quad$ Is Na^{+}a conjugate acid of a weak base and therefore acidic?
$\mathrm{CH}_{3} \mathrm{COO}^{-} \quad$ Is $\mathrm{CH}_{3} \mathrm{COO}^{-}$a conjugate base of a weak acid and therefore basic? Is $\mathrm{CH}_{3} \mathrm{COOH}$ is weak acid?
3) General rule for compound $X Y$

$$
\begin{array}{lll}
\mathrm{X}^{+} & \text {Is } \mathrm{X}^{+} \text {a conjugate acid of a weak base? } & \text { If yes, then acidic; If no, neutral } \\
\mathrm{Y}^{-} & \text {Is } \mathrm{Y}^{-} \text {a conjugate base of a weak acid? } & \text { If yes, then basic; If no, neutral }
\end{array}
$$

Overall: acidic+neutral=acidic; basic+neutral=basic;neutral+neutral=neutral

II. BUFFERS!

A buffer solution is any solution that maintains an approximately \qquad _pH despite small additions of acid and base.
 It buffers on the acidic side of neutral.

A base buffer: consists of a weak base and its conjugate acid supplied as a salt. It buffers on the basic side of neutral.

Acid Buffer Example: Mix acetic acid with an acetate salt and get dynamic equilibrium:
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})$
What happens if strong acid is added to a solution containing approximately equal amounts of $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$and $\mathrm{CH}_{3} \mathrm{COOH}$?

- UHFWRQ

What happens if OH^{-}base is added?
- The base removes a proton from $\mathrm{CH}_{3} \mathrm{COOH}$ to form $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$molecules.

Acid buffer action: The weak acid, HA, transfers protons to OH^{-}ions supplied by strong base. The conjugate base, A^{-}, of the weak acid accepts protons from the $\mathrm{H}_{3} \mathrm{O}^{+}$ions supplied by a strong acid.

A strong acid and the salt of its conjugate base don't make a good buffer. Why?

Base Buffer Example: $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
When strong acid is added, NH_{3} accepts protons from incoming acid to make NH_{4}^{+}. When strong base is added, NH_{4}^{+}donates a proton to form NH_{3} and $\mathrm{H}_{2} \mathrm{O}$.

Base buffer action: The weak base, B, accepts protons supplied by strong acid.
The conjugate acid, BH^{+}, of the weak base transfers protons to the OH^{-}ions supplied by a strong base.

A buffer is a mixture of weak conjugate acids and bases that stabilize the pH of a solution by providing D or
 \qquad for protons.

Buffers are important in biology! Blood is buffered in the range of 7.35-7.45. Buffering agents: $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}{ }^{-}$

Sample Buffer Problem: Suppose 1.00 mol of HCOOH and 0.500 mol of NaHCOO are added to water and diluted to 1.0 L . Calculate the $\mathrm{pH} .\left(\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4}\right)$
initial molarity

$\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCOO}^{-}$	
1.00	0	0.500
-x	+x	+x

change in molarity
$-\mathrm{x}+\mathrm{x}+\mathrm{x}$ equilibrium molarity
$\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4}=$

Using approximation that x is small compared to 1.00 and 0.500 ,
$\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4}=$
$\mathrm{x}=3.54 \times 10^{-4} \mathrm{M}$
Check assumption
$3.54 \times 10^{-4}=$
$\mathrm{pH}=$

Now -Calculate the pH given that 0.100 mol of a strong acid (HCl) had been included in the 1.0 L solution.
 P oles of HCOOH :

For $\mathrm{HCOOH}, 1.00 \mathrm{~mol}+0.100 \mathrm{~mol} \quad \mathrm{\square}$

$$
\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCOO}^{-}
$$

initial molarity
change in molarity equilibrium molarity
$\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4}=$

Using approximation that x is small,
$\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4}=\quad \mathrm{x}=4.87 \times 10^{-4}$

Check assumption (5\% rule)
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.31$
So addition of 0.10 mol of strong acid only changed pH from 3.45 to 3.31 !

Designing a Buffer

One must consider the relationship between the ratio of [HA] to [A^{-}], $\mathrm{pK}_{\mathrm{a}^{\prime}}$ and pH in designing a buffer.

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Rearrange:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{a}} \mathrm{x} \quad[\mathrm{HA}]
$$

[A^{-}]
Take logarithms of both sides: $\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\log \mathrm{K}_{\mathrm{a}}+\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$
Multiply by (-): $\quad-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \mathrm{K}_{\mathrm{a}} \quad-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$
That is: $\quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \left(\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}\right)$
eq
The values of $[\mathrm{HA}]$ and $\left[\mathrm{A}^{-}\right]$in the equation are at equilibrium.

However, a weak acid HA typically loses only a tiny fraction of its protons.
Likewise, a weak base A- typically only accepts a tiny fraction of protons.
So initial concentration is approximately \qquad to equilibrium concentration

So $\mathrm{pH} \cong \mathrm{pK}_{\mathrm{a}}-\log \left(\frac{\left[\mathrm{HA}_{0}\right.}{\left[\mathrm{A}^{-}\right]_{0}}\right)$ Henderson-Hasselbalch Equation
 than 5\%).

Example: Design a buffer system with pH 4.60.
Acetic acid is suitable with a pK_{a} of 4.75
A buffer solution is most effective in the range of $\mathrm{pK}_{\mathrm{a}} \pm 1$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]_{0}} \\
& \log \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]_{0}}=\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}=4.75-4.60=0.15 \\
& \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}_{0}\right.}{\left[\mathrm{CH}_{3} \mathrm{COO}_{0}^{-}\right]_{0}}=10^{0.15}=1.4
\end{aligned}
$$

The ratio is more important than the amounts used.
 Higher concentrations $=$ more resistance to change.

If you use too low concentrations, the Henderson-Hasselbalch equation won't be valid.
For $\mathrm{pH} 4.60,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is 2.5×10^{-5}.
$\frac{2.5 \times 10^{-5}}{\text { [HA] or [A-] }} \times 100 \%<5 \% \quad$ need concentration $>5.0 \times 10^{-4} \mathrm{M}$

MIT OpenCourseWare
http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

