Reading for Today: Sections 12.4-12.6 in $5^{\text {th }}$ ed. ($4^{\text {th }} \mathrm{ed}$: 11.4-11.6)
Reading Lecture \# 24: Section K
Topics: Acid-Base Titrations
I. Titration of Strong Acids and Strong Bases
II. Titration of Weak Acids/Strong Bases \& Strong Acids/Weak Bases

ACID BASE TITRATIONS

An acid-base titration is the addition of a volume of base of known concentration to acid of unknown concentration (or addition of acid to base).

This technique can be used to determine the \qquad of an acid or base.

I. TITRATION OF STRONG ACIDS AND STRONG BASES

A. Shapes of Curves and Some Definitions

In a titration of a strong acid with a strong base, or a strong base with a strong acid, the pH changes slowly initially, changes rapidly through pH 7 at the equivalence point and then changes slowly again.

Titration curves:

Strong Acid titrated with Strong Base Strong Based titrated with Strong Acid Figure by MIT OpenCourseWare.
Equivalence (stoichiometric, S) point = theoretical volume at which moles of base (or acid) added equals moles of acid (or base) that was originally present.

End point = experimentally measured volume at which the indicator changes color.
Endpoint should \qquad equivalence point.
pH indicators are weak acids or weak bases that have different colors based on different chemical structures in acidic or basic environments. Anthocyanins are examples of natural acid-base indicators.

B. Calculating Points on a pH Curve for a Strong/Strong Acid-Base Titration Example: a strong base (0.250 M NaOH) is titrated with a strong acid (0.340 M HCl)

1. Calculating the pH before the equivalence point when 5.00 mL of $0.340 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is added to 25.00 mL of 0.250 M NaOH (aq)
a). Calculate moles of OH^{-}present.
(Base is strong so moles of NaOH added \qquad moles of OH^{-}formed.)

$$
0.02500 \mathrm{~L} \times 0.250 \mathrm{~mol} / \mathrm{L}=6.2 \underline{5} \times 10^{-3} \text { moles of } \mathrm{OH}^{-} \text {present }
$$

b). Calculate moles of $\mathrm{H}_{3} \mathrm{O}^{+}$supplied by titrant.
(Acid is strong so moles HCl added \qquad moles of $\mathrm{H}_{3} \mathrm{O}^{+}$formed.)

$$
0.00500 \mathrm{~L} \times 0.340 \mathrm{~mol} / \mathrm{L}=1.7 \underline{0} \times 10^{-3} \mathrm{moles}
$$

c). Find the moles of OH^{-}remaining after the reaction with $\mathrm{H}_{3} \mathrm{O}^{+}$ions. because stoichiometry is $1: 1$
$6.2 \underline{5} \times 10^{-3}$ moles $-1.7 \underline{0} \times 10^{-3}$ moles $=4.5 \underline{5} \times 10^{-3} \mathrm{~mol}$ of \qquad left
(Since all the moles of strong acid are gone, from this point on, it is a strong base in water problem, and pH can be calculated from pOH , and pOH can be calculated from $\left[\mathrm{OH}^{-}\right]$)
d). Calculate molarity of OH^{-}

$$
4.5 \underline{5} \times 10^{-3} \mathrm{~mol} / 0.0300 \underline{0} \mathrm{~L}=0.15 \underline{2} \mathrm{~mol} / \mathrm{L} \text { (recall volume is now } 5.00 \mathrm{~mL}+25.00 \mathrm{~mL} \text {) }
$$

e). Calculate pH

$$
\mathrm{pOH}=-\log 0.15 \underline{2}=0.81 \underline{8} \quad \mathrm{pH}=14.00-0.81 \underline{8}=
$$

2. Calculating the volume of HCl needed to reach the equivalence point.

Initially $6.25 \times 10^{-3} \mathrm{~mol}$ of OH^{-}were present. At the equivalence point, \qquad mol of HCl will have been added (1:1 stoichiometry)

$$
6.2 \underline{5} \times 10^{-3} \mathrm{~mol} \times \frac{1 \mathrm{~L}}{0.34 \underline{0} \mathrm{~mol}}=0.018 \underline{4} \mathrm{~L}
$$

3. What is the pH at the equivalence point?
4. Calculate the pH after 1.00 mL of HCl has been added after equivalence point has been reached. Note: this is a strong acid in water problem.
a). Find moles of $\mathrm{H}_{3} \mathrm{O}^{+}$formed due to the 1.00 mL addition of HCl
$\left(\mathrm{H}_{3} \mathrm{O}^{+}\right.$formed $=$amount of HCl added, since strong acid)
$0.34 \underline{0} \mathrm{~mol} / \mathrm{L} \times(0.00100 \mathrm{~L})=3.4 \underline{0} \times 10^{-4} \mathrm{~mol}$ of $\mathrm{H}_{3} \mathrm{O}^{+}$
b). Calculate molarity of $\mathrm{H}_{3} \mathrm{O}^{+}$
c). Calculate $\mathrm{pH} . \quad \mathrm{pH}=-\log \left(7.66 \times 10^{-3}\right)=2.116$

C. Plotting the Calculated Numbers:

Point B: 5.00 mL of strong acid added; $\mathrm{pH}=$

Point S: \qquad of strong acid added; $\mathrm{pH}=$

Point D: 1.00 mL of strong acid beyond $\mathrm{S} ; \mathrm{pH}=$

II. TITRATIONS OF WEAK ACID/STRONG BASE \& WEAK BASE/STRONG ACID

A. Shapes of Curves and Some Definitions

In a titration of a weak acid/ base with a strong base/acid, the pH changes slowly initially, then reaches a flat part of the curve (the buffering region), and then starts to change again, and changes rapidly through the equivalence point region, and then changes slowly again.

Curve for titration of weak acid with strong base:

Equivalence (stoichiometric, S) point = theoretical volume at which moles of base (or acid) added equals moles of acid (or base) that was originally present. (but now S doesn't $=7$)
Buffering region: flat part of curve where pH is constant
Half-equivalence point: = \qquad the volume and \qquad the number of moles needed to reach the equivalence point

Curve for titration of weak base with strong acid:

Figure by MIT OpenCourseWare.

B. Calculating Points on a pH Curve for Weak Acid and Strong Bases

Example: 25.0 mL of 0.10 M HCOOH with $0.15 \mathrm{M} \mathrm{NaOH}\left(\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4}\right.$ for HCOOH$)$

1. Volume $=0 \mathrm{~mL}$ of NaOH added (Point A on plot on page 5)

Before any NaOH is added, the problem is that of an ionization of a weak acid in water.

$\mathrm{HCOOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\rightleftharpoons	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{2}^{-}(\mathrm{aq})$		
	$\mathrm{HCOOH}(\mathrm{aq})$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{2}^{-}(\mathrm{aq})$		
	0.10 M	0	0	
initial molarity	-x	+x	+x	
change in molarity	$0.10-\mathrm{x}$	x	x	

$\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4}=(\mathrm{x})^{2} /(0.10-\mathrm{x}) \sim=(\mathrm{x})^{2} / 0.10$
$\mathrm{x}=0.00421$ (check 0.00421 is 4.2% of 0.10) okay
$\mathrm{pH}=-\log [0.00421]=2.38(\ldots \quad$ sig. fig. after decimal) (Point A on plot on next page)
2. $0<\mathrm{V}<\mathrm{V}_{\text {eq }}$ (Points B-D on plot)

In this range, the acid has been partly ionized by the strong base (buffering region).

Calculate the pH of the solution resulting from the addition of 5.0 mL of 0.15 M NaOH (Point B) Because OH^{-}is a strong base, it reacts almost completely with HCOOH .
$\mathrm{HCOOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{HCO}_{2}^{-}(\mathrm{aq})$ $K \gg 1$

Initial Moles

For $\mathrm{HCOOH},\left(25.0 \times 10^{-3} \mathrm{~L}\right)(0.10 \mathrm{M})=2.5 \times 10^{-3}$ moles
For $\mathrm{OH}^{-},\left(5 . \underline{0} \times 10^{-3} \mathrm{~L}\right)(0.1 \underline{5} \mathrm{M})=0.7 \underline{5} \times 10^{-3}$ moles

Figure by MIT OpenCourseWare.

Moles after Reaction

$2 . \underline{5} \times 10^{-3}$ moles $-0.7 \underline{5} \times 10^{-3}$ moles $=$ \qquad moles of HCOOH left
$0.7 \underline{5} \times 10^{-3}$ moles OH^{-}produces \qquad moles of HCO_{2}^{-}

Molarity
1.75×10^{-3} moles of $\mathrm{HCOOH} /(0.0250+0.0050 \mathrm{~L})=0.05 \underline{8} 3 \mathrm{M} \mathrm{HCOOH}$
$0.7 \underline{5} \times 10^{-3}$ moles of $\mathrm{HCO}_{2}^{-} /(0.0250+0.0050 \mathrm{~L})=0.02 \underline{5} 0 \mathrm{M} \mathrm{HCO}_{2}^{-}$

Option 1 for calculating point B

	HCOOH	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{2}^{-}$	
initial molarity	0.0583	0	0.0250
change in molarity	-x	+x	+x
equilibrium molarity	$0.0583-\mathrm{x}$	$+x$	$0.02 \underline{5} 0+\mathrm{x}$

$\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4}=\underset{(0.0583-\mathrm{x})}{(0.0250+\mathrm{x})(\mathrm{x})}$ assume x is small $\sim=\underline{0.0250 \mathrm{x}}$
$\mathrm{x}=4.13 \times 10^{-4}$
Check assumption: 4.13×10^{-4} is 1.65% of 0.025 and is 0.7% of 0.0583 okay
$\mathrm{pH}=-\log \left[4 . \underline{13} \times 10^{-4}\right]=3.3 \underline{8}$

Option 2 for calculating point B

$$
\begin{aligned}
& \mathrm{pH} \sim=\mathrm{pK}_{\mathrm{a}}-\log \left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right) \\
& \mathrm{pH} \sim=3.75-\log ([0.0583] /[0.0250])=3.75-0.368=3.3 \underline{8}
\end{aligned}
$$

Check Henderson-Hasselbalch assumption
for a pH of $3.38,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.2 \times 10^{-4}$
Check that 4.2×10^{-4} is $<5 \%$ of 0.0250 (It is 1.7%. Okay)
If the 5% assumption isn't valid, than option 1 must be used, and
$\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4}=(0.0250+\mathrm{x})(\mathrm{x}) /(0.0583-\mathrm{x})$ cannot be simplified. Must solve by quadratic equation.

Figure by MIT OpenCourseWare.

Again, when the volume of NaOH added is between 0 and the equivalence volume $V_{\text {eq }}$ the problems are similar to buffer problems. This region of the titration curve is called the "buffering region."

Half-equivalence point (Point C)

When the volume of NaOH added is equal to half the equivalence volume, $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$.

```
pH ~= pK
pH ~=pKa -log (1)
pH ~=pKa
pH= pK
```

We will finish this titration next time, starting with Point S

MIT OpenCourseWare
http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

