LECTURE 26

1. You are given two half-cells, one a standard $\mathrm{Cu}(s) \mid \mathrm{Cu}^{+2}(a q)$, and the other an unknown metal, described as $\mathrm{M}(s) \mid \mathrm{M}^{+n}(a q)$. When you connect the half cells at $25^{\circ} \mathrm{C}$, you make a galvanic cell with $E=0.57 \mathrm{~V}$. You also notice that copper is being deposited on the electrode.
(a) Calculate the standard potential of the unknown half-cell using the table at the end of this PSet.
(b) Using the table at the end of this PSet, determine what the metal is.
(a) $E^{\circ}=-0.23 \mathrm{~V}$
(b) Nickel
2. Oxidative damage of DNA leads to mutation, which can in turn lead to cancer or genetic defects. The redox potentials of the four nucleotides of DNA are listed below. Which nucleotide (A, G, T, C) is the most likely to undergo oxidation?

Nucleotide	$\boldsymbol{E}(\mathbf{V})$
G	1.33
A	1.42
C	1.60
T	1.70

G is most likely to undergo oxidation.

3. Using Standard Reduction Potentials listed below, answer the following.
(a) Which is the best reducing agent: $\mathrm{Cu}, \mathrm{Cu}^{2+}$, or Fe ?
(b) Which is the best oxidizing agent: $\mathrm{Au}, \mathrm{Au}^{+}, \mathrm{Ag}^{+}$, or Ag ?
(c) Which of the following will spontaneously oxidize $\mathrm{Pb}: \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$, or Fe^{2+} ?
4. You construct a galvanic cell using the two half cells below:

$$
\begin{gathered}
\mathrm{Au}^{+}(a q)+\mathrm{e}^{-} \rightarrow \mathrm{Au}(s) \\
\mathrm{Cl}_{2}(g)+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(a q)
\end{gathered}
$$

The initial concentration of Au^{+}is 0.10 M and Cl^{-}is 0.50 M . The initial pressure of Cl_{2} is 1.50 atm at $25^{\circ} \mathrm{C}$. Using the table below, calculate the initial voltage of the galvanic cell. 0.25 V
5. Using the table below, determine the unknown quantity for the following galvanic cell: $\mathrm{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(\mathrm{~g}, 1.0 \mathrm{bar})\right| \mathrm{H}^{+}(\mathrm{pH}=?) \| \mathrm{Cl}(\mathrm{aq}, 1.0 \mathrm{M})|\mathrm{AgCl}(\mathrm{s})| \mathrm{Ag}(\mathrm{s}), E=+0.30 \mathrm{~V}$
$\mathrm{pH}=1$

LECTURE 26

Selected Standard Reduction Potentials at $25^{\circ} \mathrm{C}$

Half-Reactions	$E^{\circ}($ volts $)$
$\mathrm{Au}^{+}(a q)+\mathrm{e}^{-} \rightarrow \mathrm{Au}(s)$	1.69
$\mathrm{HClO}_{2}(a q)+2 \mathrm{H}_{3} \mathrm{O}^{+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{HClO}^{2}(a q)+3 \mathrm{H}_{2} \mathrm{O}(\lambda)$	1.640
$\mathrm{HClO}^{2}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{Cl}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\lambda)$	1.63
$\mathrm{Cl}_{2}(g)+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(a q)$	1.3583
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}_{3} \mathrm{O}^{+}(a q)+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(a q)+21 \mathrm{H}_{2} \mathrm{O}(\lambda)$	1.330
$\mathrm{Ag}^{+}(a q)+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(s)$	0.7996
$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(s)$	0.3402
$\mathrm{AgCl}^{2}(s)+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(s)+\mathrm{Cl}^{-}(a q)$	0.22
$\mathrm{Cu}^{2+}(a q)+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(a q)$	0.15
$2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0.000
$\mathrm{~Pb}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(s)$	-0.13
$\mathrm{Sn}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(s)$	-0.14
$\mathrm{Ni}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(s)$	-0.23
$\mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(s)$	-0.44
$\mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(s)$	-0.7628
$\mathrm{Mg}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(s)$	-2.36

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

