For the reaction: $Pb^{2+}(aq) + Zn(s) \rightleftharpoons Zn^{2+}(aq) + Pb(s)$

- In the forward direction, Pb²⁺ is reducing Zn. In the reverse direction, Zn²⁺ is reducing Pb.
- In the forward direction, Zn is reducing Pb²⁺.
 In the reverse direction, Zn²⁺ is reducing Pb.
- In the forward direction, Zn is reducing Pb²⁺.
 In the reverse direction, Pb is reducing Zn²⁺.
- 4. In the forward direction, Zn is reducing Zn²⁺. In the reverse direction, Pb is reducing Pb²⁺.

For the reaction: $Pb^{2+}(aq) + Zn(s) \rightleftharpoons Zn^{2+}(aq) + Pb(s)$

13%	1.	In the forward direction, Pb ²⁺ is reducing Zn. In the reverse direction, Zn ²⁺ is reducing Pb.
23%	2.	In the forward direction, Zn is reducing Pb ²⁺ . In the reverse direction, Zn ²⁺ is reducing Pb.
63%	3.	In the forward direction, Zn is reducing Pb ²⁺ . In the reverse direction, Pb is reducing Zn ²⁺ .
1%	4.	In the forward direction, Zn is reducing Zn^{2+} . In the reverse direction, Pb is reducing Pb^{2+} .

Which is a better reducing agent?

 E° for vitamin B₁₂ is -0.526 V. E° for flavodoxin is -0.230 V.

- 1. Neither one is better. Both have negative standard reduction potentials.
- 2. flavodoxin
- 3. vitamin B12

Which is a better reducing agent?

$$E^{\circ}$$
 for vitamin B₁₂ is -0.526 V.
 E° for flavodoxin is -0.230 V.

Neither one is better. Both have negative standard reduction potentials.
 flavodoxin
 yitamin B12

Donor atoms are called ligands. Ligands are:

- 1. Lewis acids –they accept electrons
- 2. Lewis acids –they donate electrons
- 3. Lewis **bases** –they **accept** electrons
- 4. Lewis **bases** –they **donate** electrons

Donor atoms are called ligands. Ligands are:

11%	1.	Lewis acids – they accept electrons
29%	2.	Lewis acids –they donate electrons
7%	3.	Lewis bases –they accept electrons
52%	4.	Lewis bases they donate electrons

What are the geometries with CN = 5?

- 1. trigonal planar; square pyramidal
- 2. pyramidal; bipyramidal
- 3. trigonal bipyramidal; square pyramidal
- 4. see-saw; square pyramidal

What are the geometries with CN = 5?

What is the geometry around the metal in EDTA?

- 1. octahedral
- 2. square planar
- 3. square pyramidal
- 4. tetrahedral
- 5. see-saw

What is the geometry around the metal in EDTA?

- ✓1. octahedral
 - 2. square planar
 - 3. square pyramidal
 - 4. tetrahedral
 - 5. see-saw

Determine the oxidation number and d-count for $[Co(H_2O)_2(NH_3)Cl_3]^-$ (Hint: Co is in group 9 of the periodic table.)

- a. oxidation number = -1, d-count: 10
- b. oxidation number = 0, d-count: 9
- c. oxidation number = 1, d-count: 8
- d. oxidation number = 2, d-count: 7
- e. oxidation number = 3, d-count: 6
- f. oxidation number = 4, d-count: 5
- g. oxidation number = 5, d-count: 4
- h. oxidation number = 6, d-count: 3

Determine the oxidation number and d-count for $[Co(H_2O)_2(NH_3)Cl_3]^-$ (Hint: Co is in group 9 of the periodic table.)

16%	a.	oxidation number = -1, d-count: 10
8%	b.	oxidation number = 0 , d-count: 9
6%	c.	oxidation number = 1, d-count: 8
59%	🙂 d.	oxidation number = 2, d-count: 7
5%	e.	oxidation number = 3, d-count: 6
4%	f.	oxidation number = 4, d-count: 5
1%	g.	oxidation number = 5, d-count: 4
1%	h.	oxidation number = 6, d-count: 3

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.