For the reaction:

$$
\mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightleftarrows \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Pb}(\mathrm{~s})
$$

1. In the forward direction, Pb^{2+} is reducing Zn . In the reverse direction, Zn^{2+} is reducing Pb .
2. In the forward direction, Zn is reducing Pb^{2+}. In the reverse direction, Zn^{2+} is reducing Pb .
3. In the forward direction, Zn is reducing Pb^{2+}. In the reverse direction, Pb is reducing Zn^{2+}.
4. In the forward direction, Zn is reducing Zn^{2+}. In the reverse direction, Pb is reducing Pb^{2+}.

For the reaction:

$$
\mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightleftarrows \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Pb}(\mathrm{~s})
$$

1. In the forward direction, Pb^{2+} is reducing Zn . In the reverse direction, Zn^{2+} is reducing Pb .
2. In the forward direction, Zn is reducing Pb^{2+}. In the reverse direction, Zn^{2+} is reducing Pb .
3. In the forward direction, Zn is reducing Pb^{2+}. In the reverse direction, Pb is reducing Zn^{2+}.
4. In the forward direction, Zn is reducing Zn^{2+}. In the reverse direction, Pb is reducing Pb^{2+}.

Which is a better reducing agent?

$$
\begin{aligned}
& E^{\circ} \text { for vitamin } \mathrm{B}_{12} \text { is }-0.526 \mathrm{~V} \text {. } \\
& E^{\circ} \text { for flavodoxin is }-0.230 \mathrm{~V} \text {. }
\end{aligned}
$$

1. Neither one is better. Both have negative standard reduction potentials.
2. flavodoxin
3. vitamin B12

Which is a better reducing agent?

E° for vitamin B_{12} is -0.526 V .
E° for flavodoxin is -0.230 V .
10% 1. Neither one is better. Both have negative standard reduction potentials.
2. flavodoxin

53\% ©) 3. vitamin B12

Donor atoms are called ligands. Ligands are:

1. Lewis acids -they accept electrons
2. Lewis acids -they donate electrons
3. Lewis bases -they accept electrons
4. Lewis bases -they donate electrons

Donor atoms are called ligands. Ligands are:

11%	1.	Lewis acids -they accept electrons
29%	2.	Lewis acids -they donate electrons
7%	3.	Lewis bases -they accept electrons
52%	4.	Lewis bases -they donate electrons

What are the geometries with $\mathrm{CN}=5$?

1. trigonal planar; square pyramidal
2. pyramidal; bipyramidal
3. trigonal bipyramidal; square pyramidal
4. see-saw; square pyramidal

What are the geometries with $\mathrm{CN}=5$?

2% 1. trigonal planar, square pyramidal 2. pyramidal; bipyramidal 3. trigonal bipyramidal; square pyramidal
4. see-saw; square pyramidal

What is the geometry around the metal in EDTA?

1. octahedral
2. square planar
3. square pyramidal
4. tetrahedral
5. see-saw

What is the geometry around the metal in EDTA?

86\%
 1. octahedral
 2. square planar
 3. square pyramidal
 4. tetrahedral
 5. see-saw

Determine the oxidation number and d-count for $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]^{-}$
(Hint: Co is in group 9 of the periodic table.)
a. \quad oxidation number $=-1$, d-count: 10
b. \quad oxidation number $=0, d-$ count: 9
c. \quad oxidation number $=1, d$-count: 8
d. \quad oxidation number $=2$, d-count: 7
e. \quad oxidation number $=3$, d-count: 6
f. \quad oxidation number $=4$, d-count: 5
g. \quad oxidation number $=5$, d-count: 4
h. \quad oxidation number $=6$, d-count: 3

Determine the oxidation number and d-count for $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]^{-}$
(Hint: Co is in group 9 of the periodic table.)

16\%	a	number $=$
8\%		idation number $=0$, d-count: 9
6\%	c.	oxidation number $=1$, d-count: 8
59\%		oxidation number $=2$, d-count: 7
5\%		xidation number $=3$, d-count: 6
4\%	f.	oxidation number $=4$, d-count: 5
1\%		xidation number $=5$, d-count: 4
\%		oxidation number $=6, \mathrm{~d}$-count:

MIT OpenCourseWare
|http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

