LECTURE 29

1. Cisplatinum $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is a potent anticancer drug. For lecture 27 practice problems, you drew the structure of cisplatinum and its isomer transplatinum, determined the expected bond angles, and determined the CN .
(a) Draw the crystal field energy-level diagram for cisplatinum, labeling the d-orbitals
(b) Predict whether cisplatinum is diamagnetic or paramagnetic. Explain your answer.

From lecture 27 problems:
Structures:

Cisplatinum

Transplatinum

Bond angles: 90°
CN: 4
a) d^{8}

Square planar crystal field

b) diamagnetic.
2. (i) Draw a crystal field splitting diagram to show the expected distribution of electrons in the 3d-orbitals of the central metal in each of the following complex ions.
(ii) Label as low-spin or high-spin state.

LECTURE 29

(iii) Indicate the number of unpaired electrons in each case.
(iv) Give the names of the d-orbitals, and label the appropriate orbital sets e_{g} and $t_{2 g}$ or e and t_{2}.
(v) Write the d^{n} electron configurations.
(a) octahedral $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$
(b) tetrahedral $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(a) octahedral $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$
d^{4} low spin.
Octahedral weak field

$\left(t_{2} g\right)^{4}$ two unpaired electrons.
(b) tetrahedral $\left[\mathrm{NiCl}_{4}\right]^{2-}$
d^{8} high spin.
Tetrahedral (usually weak field)

$(e)^{4}\left(\mathbf{t}_{2}\right)^{4}$. two unpaired electrons

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

