Reading For Today: 16.5-16.7 in $5^{\text {th }}$ and $4^{\text {th }}$ editions Reading for lecture\# 28: 16.8-16.11 in $4^{\text {th }}$ and $5^{\text {th }}$ editions

Topic: I. d-Block Metals or Transition Metals
II. Coordination Complexes (Chelate effect, Shapes, Isomers)
III. d-orbital Counting and d-orbitals

I. d-Block Metals or Transition Metals

Elements in groups 3-12 are d-block metals, often referred to as \qquad metals.

Periodic Table of the Elements, by DePiep 2013. Wikimedia Commons.
d-block metals naturally occurring in biology - V, Cr, Mn, $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Mo}, \mathrm{Cd}, \mathrm{W}$.
d-block metals used as probes of biological systems and / or pharmaceuticals include: Cr , $\mathrm{Co}, \mathrm{Y}, \mathrm{Tc}, \mathrm{Ag}, \mathrm{Cd}, \mathrm{Pt}, \mathrm{Au}, \mathrm{Hg}$.

Roles of metals in biology include:
global cycling of nitrogen, carbon, hydrogen; biosynthesis of vitamins and deoxynucleotides; respiration; photosynthesis etc

IN THEIR OWN WORDS

Dr. Sarah Bowman studies a protein from a pathogenic bacterium that is found in the stomach and is known to cause ulcers. She explains how the bacterium survives in the low pH environment of the stomach by using nickel-dependent proteins to buffer the acidity of its environment.

II. Coordination Complexes

A key feature of transition metals is their ability to form complexes with small molecules and ions.

Positive metals ions can attract electron density, usually a lone pair of electrons from another atom or molecule to form a coordination complex.

Donor atoms are called ligands (Lewis \qquad -typically \qquad one lone pair of electrons)

> Examples of ligands:

$: \mathrm{NO}_{2}^{-}$	$: \mathrm{OCO}_{2}^{-2}$	$: \mathrm{CN}^{-}$	$: \mathrm{SCN}^{-}$	$: \mathrm{NCS}^{-}$
$2 \mathrm{e}^{-}$				
$: \mathrm{OH}^{-}$	$: \mathrm{OH}_{2}$	$: \mathrm{NH}_{3}$	2 CO	$: \mathrm{NO}^{+}$
$2 \mathrm{e}^{-}$				

Acceptor atoms are transition metals (Lewis \qquad - \qquad onelone pair of electrons)

Examples of transition metals: $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ir}, \mathrm{Pt}$, etc

Coordination complexes are composed of metals that are surrounded by ligands. Example:

Coordination number (CN) is the number of ligands bonded to the metal ion.
Here $\mathrm{CN}=6$. \qquad ligands comprise the primary coordination sphere.

CN numbers typically range from $2-12$. Six is the most common.

Coordination Complex Notation

$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3} 3 \mathrm{Cl}^{-1}$
$\left[\mathrm{Co}\left(\stackrel{\downarrow}{\mathrm{N}} \mathrm{H}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
NH_{3} within bracket is bound to $\mathrm{Co} ; \mathrm{Cl}$ outside bracket is a counter ion.
$\underline{\text { Structures of coordination complexes }(M=\text { Metal, } L=\text { Ligand }) ~}$

Chelates: another name for coordination complexes, from the Greek word for claws.
Ligands \qquad a metal by binding with one or more sites of attachment

Monodentate (one tooth): one point of attachment
Bidentate: \qquad points of attachment
Tridentate: \qquad points of attachment
Tetradentate : \qquad points of attachment

Hexadentate: \qquad points of attachment

Examples of multidentate chelates

1. Vitamin B_{12}.

Cobalt is coordinated by a planar tetradentate ligand (corrin ring).

It is also coordinated by an upper axial ligand (5'deoxyadenosine) and a lower axial ligand (dimethylbenzimidazole)

It's structure was determined using X-ray crystallography by British Crystallographer Dorothy Crowfoot Hodgkin. She won the Nobel Prize in 1964 for this work and for determining the structure of pencillin.
2. Ethylenediamine tetraacetic acid (EDTA).

Free EDTA

Geometry around M is
\qquad
\qquad dentate

Binding of EDTA is \qquad favorable.

Six molecules of $\mathrm{H}_{2} \mathrm{O}$ are released for every 1 molecule of EDTA bound.

The Chelate Effect refers to the unusually \qquad of metal chelates due to the favorable entropic factor accompanying release of non-chelating ligands (usually $\mathrm{H}_{2} \mathrm{O}$) from the coordination sphere.

Uses of EDTA

Isomers
Geometric isomers can have vastly different properties.
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ has two geometric isomers

potent anti-cancer drug
cisplatin

Only when the Cl ligands on same side (cis to each other) can the molecule bind to DNA. Cisplatin cured Lance Armstrong of cancer.

Optical isomers (enantiomers, \qquad molecules) are non-superimposable mirror images of each other.

Chiral molecules have different properties in chiral environments (such as a human body).

III. d-Electron Counting in Coordination Complexes and d-Orbitals

d-electron count of metal = group number (periodic table) - oxidation number of metal

1. find oxidation number
for Co in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}=$ Hint: NH_{3} is a neutral ligand
2. d-count is 9 - \qquad $=$ \qquad $\mathrm{d}^{? ?}$

Practice with d-counts
Complexes Oxidation number of metal d-count $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]^{-}$

d Orbitals

There are five d orbitals: $d_{x y}, d_{x y} d_{y z} d_{x^{2}-y^{2}}{ }^{2} d_{z}{ }^{2}$.
You need to be able to draw their shapes.

$\mathrm{d}_{\mathrm{z}}{ }^{2}$ has maximum amplitude along z and doughnut in xy plane

$\mathrm{d}_{x^{2}-y^{2}}{ }^{2}$ has maximum amplitude along x and y axes.

d_{xz} has maximum amplitude 45° to x and z axes
d_{yz} has maximum amplitude 45° to y and z axes

 amplitude 45° to x and y axes

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

