Reading For Today: 16.8-16.11 in $4^{\text {th }}$ and $5^{\text {th }}$ editions
Reading for Lecture \#30: 14.1-14.5 in $5^{\text {th }}$ ed and 13.1-13.5 in $4^{\text {th }} \mathrm{ed}$.

Topic: I. Spectroscopic Theory: Both Ligand Type and Geometry Make a Difference
 II. Crystal Field Theory: Tetrahedral Case
 III. Crystal Field Theory: Square Planar Case
 IV. Other Geometries and Applications

I. Spectroscopic Theory: Both Ligand Type and Geometry Make a Difference

Nickel Demonstration

Recall the color of light transmitted is complementary to the color of light that is absorbed. Red is complementary to green; orange is complementary to blue; yellow is complementary to violet.
[$\left.\mathrm{NiCl}_{6}\right]^{4-}$ (greenish)
Absorbs λ that is \qquad ; so Δ_{o} is \qquad ; Cl^{-}is a \qquad field ligand
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{\mathbf{2 +}}$ (blue-green)
Absorbs λ that is \qquad than above; so Δ_{o} is \qquad than above;
$\mathrm{H}_{2} \mathrm{O}$ is a \qquad field ligand than above
\downarrow EDTA
Ni-EDTA (blue)
Absorbs λ that is \qquad than above; so Δ_{o} is \qquad than above;

EDTA is a \qquad field ligand than above

Also
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{\mathbf{2 +}}\right.$ (blue-green)
\downarrow dimethylglyoxine (dmgH)
$\mathbf{N i}-(\mathrm{dmgH})_{2}$ (red)
Absorbs λ that is \qquad than above; so Δ is \qquad ; but the complex is square planar and not octahedral. Geometry matters. Square planar geometry must allow for a large splitting of the energy of the d-orbitals.
(We will look at this in a few minutes.)

II. Crystal Field Theory: Tetrahedral Case

x-axis out of the page

tetrahedral

tetrahedral

- There is \qquad repulsion between the ligand negative point charges and the d-orbitals that are 45° off axis $\left(\mathrm{d}_{\mathrm{y} z}, \mathrm{~d}_{\mathrm{x} z} \mathrm{~d}_{\mathrm{xy}}\right)$ than there is between the ligand negative point charges and the d-orbitals that are on axis $\left(\mathrm{d}_{\mathrm{z}}{ }^{2}\right.$ and $\mathrm{d}_{\mathrm{x}-\mathrm{y}}{ }^{2}$) .
- As a result of the above, there is greater orbital destabilization for $\mathrm{d}_{\mathrm{yz}} \mathrm{d}_{\mathrm{x} z}, \mathrm{~d}_{\mathrm{xy}}$ than for $\mathrm{d}_{x^{2}-y^{2}}{ }^{2}$ and $\mathrm{d}_{\mathrm{z}}{ }^{2}($ \qquad of octahedral).
- $\mathrm{d}_{\mathrm{z}}{ }^{2}$ and $\mathrm{d}_{\mathrm{x}-\mathrm{y}}{ }^{2}$ have the \qquad energy with respect to each other (degenerate).
- $\mathrm{d}_{\mathrm{yz}} \mathrm{d}_{\mathrm{x} z} \mathrm{~d}_{\mathrm{xy}}$ have the same energy with respect to each other (degenerate).
- The tetrahedral crystal field splitting energy $\left(\Delta_{T}\right)$ is \qquad than for octahedral complexes because the point charges are not directed at any orbital set.

(Spherical crystal field) (Octahedral crystal field)
- Δ_{o} and Δ_{T} are the octahedral and tetrahedral crystal field splitting energy, respectively
- Again, the positioning of the orbitals is opposite for tetrahedral and octahedral
- $\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{x} z}$ and d_{yz} orbitals are now called \mathbf{t}_{2} and $\mathrm{d}_{\mathrm{x}-\mathrm{y}}{ }^{2}$ and $\mathrm{d}_{\mathrm{z}}{ }^{2}$ are \mathbf{e}
- Δ_{T} is \qquad than Δ_{o} because the point charges are not directed at any orbital set in a tetrahedral crystal field.
- Because Δ_{T} is small, many tetrahedral complexes are \qquad .
- You can assume that they are all high spin!
- Because the overall energy in the tetrahedral crystal field is maintained, t_{2} orbitals go up in energy by $2 / 5$, and the e orbitals go down in energy by $3 / 5$.

Tetrahedral Example for Cr^{3+}

(a) figure out d electron count
(b) draw tetrahedral crystal field splitting diagram, label orbitals, and fill in electrons

average energy of
(e) d orbitals with ligands
(Spherical crystal field) (Tetrahedral crystal field)
(c) Write d^{n} electron configuration:
(d) How many unpaired electrons?
(e) If this compound is $\left[\mathrm{CrCl}_{6}\right]^{3-}$ and the wavelength of most intensely absorbed light is 740 nm , predict the color of the complex.

III. Crystal Field Theory: Square Planar Case

much less repulsion than in octahedral crystal field.
Less repulsion than for $\mathrm{d}_{\mathrm{x}-\mathrm{y}}^{2}{ }^{2}$ and for d_{xy}

Square planar
ligand point charges
directed at orbitals
Destablized compared to all other d-orbitals

Square planar stabilized compared stabilized compared to $d_{x y}$ and $d_{x^{2}-y^{2}}^{2} \quad$ to $d_{x y}$ and $d_{x^{2}-y^{2}}{ }^{2}$
\qquad repulsion than for $\mathrm{d}_{x z}$ $\overline{d_{x z}}$ and $\mathrm{d}_{\mathrm{z}}{ }^{2}$. Less repulsion than for $\mathrm{d}_{x^{2}-y^{2}}{ }^{2}$ since orbitals are 45° off axis in d_{xy}.

What about square
pyramidal?

square planar

square pyramidal
$\mathrm{d}_{\mathrm{z}^{2}}$ is \qquad for square pyramidal compared to square planar
d_{xz} and d_{yz} are \qquad for square pyramidal compared to square planar
$d_{x^{2-}} y^{2}$ and $d_{x z}$ are \qquad degenerate for square pyramidal

And Applications to metalloenzymes (Nickel enzyme example)

Nickel dependent enzymes are responsible for removing ~ 100 million tons of CO from the atmosphere each year and producing ~ 1 trillion kg of acetate from greenhouse gases and other carbon sources. We want to know what these nickel-based catalysts look like, so that we can mimic this chemistry.

To probe the geometry of the nickel cofactor, spectroscopy was used and it was found that the $\mathrm{Ni}^{2+}\left(\mathrm{d}^{8}\right)$ center was diamagnetic. Predict whether it has square planar, tetrahedral, or octahedral geometry?

$$
-d_{x}{ }^{2}-y^{2}
$$

i E $\quad \overline{d_{x}^{2}-y^{2}} \quad \overline{d_{z}^{2}}$
$-d_{x y}$

$$
-\mathrm{d}_{\mathrm{z}}^{2}
$$

$$
\overline{\mathrm{d}_{\mathrm{xz}}} \overline{\mathrm{~d}_{\mathrm{yz}}}
$$

(Square planar
crystal field)

Answer:
The Ni center in the enzyme must be \qquad .

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

