Proposed mechanism for $2NO + Br_2 \rightarrow 2NOBr$:

step 1:
$$NO + Br_2 \stackrel{k_1}{\underset{k_{-1}}{\leftrightarrow}} NOBr_2$$

step 2: $NOBr_2 + NO \stackrel{k_2}{\rightarrow} 2NOBr$

rate = $2k_1k_2[NO]^2[Br_2]/(k_{-1} + k_2[NO])$

If the first step is fast and the second step is slow,

1. rate =
$$k_{obs}[NO][Br_2]$$

2. rate = $k_{obs}[Br_2]/[NO]$ Today is the Last Clicker
3. rate = $k_{obs}[NO]^2[Br_2]$ Competition Before the
Championship!!!
4. rate = $k_{obs}[NO]^2/[Br_2]$

Proposed mechanism for $2NO + Br_2 \rightarrow 2NOBr$:

step 1:
$$NO + Br_2 \stackrel{k_1}{\underset{k_1}{\longleftrightarrow}} NOBr_2$$

step 2: $NOBr_2 + NO \stackrel{k_2}{\longrightarrow} 2NOBr$

rate = $2k_1k_2[NO]^2[Br_2]/(k_{-1} + k_2[NO])$

If the first step is fast and the second step is slow,

38%1. rate =
$$k_{obs}[NO][Br_2]$$
17%2. rate = $k_{obs}[Br_2]/[NO]$ Today is the Last Clicker
Competition Before the42%3. rate = $k_{obs}[NO]^2[Br_2]$ 2%4. rate = $k_{obs}[NO]^2/[Br_2]$

Is factor A temperature dependent?

- 1. Yes, factor A increases as temperature increases.
- 2. Yes, factor A decreases as temperature increases.
- 3. No.

Is factor A temperature dependent?

- 1. Yes, factor A increases as temperature increases.
- 2. Yes, factor A decreases as temperature increases.
- 3. No.

Is E_a temperature dependent?

- 1. Yes, E_a increases as temperature increases.
- 2. Yes, E_a decreases as temperature increases.

3. No.

Is E_a temperature dependent?

- 1. Yes, E_a increases as temperature increases.
- 2. Yes, E_a decreases as temperature increases.

1.
$$K_1 = [N_2O_2]/[NO]$$
 $[N_2O_2] = K_1[NO]$
2. $K_1 = [NO]^2/[N_2O_2]$ $[N_2O_2] = [NO]^2/K_1$
3. $K_1 = [N_2O_2]/[NO]^2$ $[N_2O_2] = K_1[NO]^2$
4. $K_1 = [N_2O_2]$ $[N_2O_2] = K_1$

$$\mathbf{K}_1 = \underline{\qquad} \qquad [\mathbf{N}_2 \mathbf{O}_2] = \underline{\qquad}$$

step 1 (fast):
$$NO + NO \xleftarrow{k_1}{k_{-1}} N_2O_2$$

step 2 (slow): $N_2O_2 + O_2 \xrightarrow{k_2} 2NO_2$

 $2NO + O_2 \rightarrow 2NO_2$

$$2NO + O_2 \rightarrow 2NO_2$$

step 1 (fast):
$$NO + NO \xleftarrow{k_1}{k_{-1}} N_2O_2$$

step 2 (slow):
$$N_2O_2 + O_2 \xleftarrow{k_2} 2NO_2$$

4%	1.	$K_1 = [N_2 O_2] / [NO]$	$[N_2O_2] = K_1[NO]$
30%	2.	$K_1 = [NO]^2 / [N_2O_2]$	$[N_2O_2] = [NO]^2/K_1$
64%	3.	$K_1 = [N_2O_2]/[NO]^2$	$[N_2O_2] = K_1[NO]^2$
<mark>2%</mark>	4.	$K_1 = [N_2 O_2]$	$[N_2O_2] = K_1$

Increasing the temperature of an exothermic reaction:

- 1. Decreases K.
- 2. Increases K.
- 3. Has no effect on K, K is a constant.

Increasing the temperature of an exothermic reaction:

- ✓1. Decreases K.
 - 2. Increases K.
 - 3. Has no effect on K, K is a constant.

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.