Proposed mechanism for $2 \mathrm{NO}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NOBr}$:

$$
\begin{array}{cc}
\text { step 1: } & \mathrm{NO}+\mathrm{Br}_{2} \stackrel{\mathrm{k}_{1}}{\stackrel{k_{1}}{\longrightarrow}} \mathrm{NOBr}_{2} \\
\text { step 2: } & \mathrm{NOBr}_{2}+\mathrm{NO} \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NOBr}
\end{array}
$$

$$
\text { rate }=2 \mathbf{k}_{1} \mathbf{k}_{2}\left[\mathrm{NO}^{2}\right]^{2}\left[\mathrm{Br}_{2}\right] /\left(\mathrm{k}_{-1}+\mathbf{k}_{2}[\mathrm{NO}]\right)
$$

If the first step is fast and the second step is slow,

1. rate $=\mathrm{k}_{\mathrm{obs}}[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]$
2. rate $=\mathrm{k}_{\mathrm{obs}}\left[\mathrm{Br}_{2}\right] /[\mathrm{NO}]$ Today is the Last Clicker Competition Before the
3. \quad rate $=\mathrm{k}_{\mathrm{obs}}[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right] \quad$ Championship!!!
4. rate $=\mathrm{k}_{\mathrm{obs}}[\mathrm{NO}]^{2} /\left[\mathrm{Br}_{2}\right]$

Proposed mechanism for $2 \mathrm{NO}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NOBr}$:

$$
\begin{array}{cc}
\text { step 1: } & \mathrm{NO}+\mathrm{Br}_{2} \stackrel{\mathrm{k}_{1}}{\stackrel{\mathrm{k}_{-1}}{\longrightarrow}} \mathrm{NOBr}_{2} \\
\text { step 2: } & \mathrm{NOBr}_{2}+\mathrm{NO} \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NOBr} \\
\text { rate }=\mathbf{2} \mathbf{k}_{\mathbf{1}} \mathbf{k}_{\mathbf{2}}\left[\mathbf{N O}^{2}\left[\mathbf{B r}_{2}\right] /\left(\mathbf{k}_{-1}+\mathbf{k}_{\mathbf{2}}[\mathbf{N O}]\right)\right.
\end{array}
$$

If the first step is fast and the second step is slow,

38%	1. rate $=\mathrm{k}_{\mathrm{obb}}[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]$		
17%	2.	rate $=\mathrm{k}_{\mathrm{ob}}\left[\mathrm{Br}_{2}\right] /[\mathrm{NO}] \quad$	Today is the Last Clicker
:---:			
Competition Before the			

Is factor A temperature dependent?

1. Yes, factor A increases as temperature increases.
2. Yes, factor A decreases as temperature increases.
3. No.

Is factor A temperature dependent?

1. Yes, factor A increases as temperature increases.
2. Yes, factor A decreases as temperature increases.
3. No.

Is E_{a} temperature dependent?

1. Yes, E_{a} increases as temperature increases.
2. Yes, E_{a} decreases as temperature increases.
3. No.

Is E_{a} temperature dependent?

1. Yes, E_{a} increases as temperature increases.
2. Yes, E_{a} decreases as temperature increases.
()3. No.

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

step 1 (fast): $\quad \mathrm{NO}+\mathrm{NO} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\longrightarrow}} \mathrm{~N}_{2} \mathrm{O}_{2}$
step 2 (slow): $\quad \mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NO}_{2}$
$K_{1}=$

1. $\mathrm{K}_{1}=\left[\mathrm{N}_{2} \mathrm{O}_{2}\right] /[\mathrm{NO}]$
2. $\mathrm{K}_{1}=[\mathrm{NO}]^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]$
3. $\mathrm{K}_{1}=\left[\mathrm{N}_{2} \mathrm{O}_{2}\right] /[\mathrm{NO}]^{2}$
4. $\mathrm{K}_{1}=\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]$
$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=$
$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=\mathrm{K}_{1}[\mathrm{NO}]$
$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=[\mathrm{NO}]^{2} / \mathrm{K}_{1}$
$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=\mathrm{K}_{1}[\mathrm{NO}]^{2}$
$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=\mathrm{K}_{1}$

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

step 1 (fast): $\quad \mathrm{NO}+\mathrm{NO} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\longrightarrow}} \mathrm{~N}_{2} \mathrm{O}_{2}$
step 2 (slow): $\quad \mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NO}_{2}$
$K_{1}=$
$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=$

4%	1. $\mathrm{K}_{1}=\left[\mathrm{N}_{2} \mathrm{O}_{2}\right] /[\mathrm{NO}]$	$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=\mathrm{K}_{1}[\mathrm{NO}]$
30%	2. $\mathrm{K}_{1}=[\mathrm{NO}]^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=[\mathrm{NO}]^{2} / \mathrm{K}_{1}$
64%	3. $\mathrm{K}_{1}=\left[\mathrm{N}_{2} \mathrm{O}_{2}\right] /[\mathrm{NO}]^{2}$	$\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]=\mathrm{K}_{1}[\mathrm{NO}]^{2}$
2%	4. $\mathrm{K}_{1}=\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=\mathrm{K}_{1}$

Increasing the temperature of an exothermic reaction:

1. Decreases K.
2. Increases K.
3. Has no effect
on K, K is a
constant.

Increasing the temperature of an exothermic reaction:

1. Decreases K.
2. Increases K.
3. Has no effect on K, K is a constant.

MIT OpenCourseWare
|http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

