If the temperature of a reaction is increased,

- 1. rate constants always increase and equilibrium constants always decrease.
- 2. rate constants always increase and equilibrium constants always increase.
- 3. rate constants always decrease and equilibrium constants always decrease.
- 4. rate constants always decrease and equilibrium constants always increase.
- 5. rate constants always decrease and equilibrium constants either increase or decrease.
- 6. rate constants always increase and equilibrium constants either increase or decrease.

If the temperature of a reaction is increased,

- 14% 1. rate constants always increase and equilibrium constants always decrease.
- 16% 2. rate constants always increase and equilibrium constants always increase.
- 8%3. rate constants always decrease and equilibrium constants always decrease.

1%

4%

- 4. rate constants always decrease and equilibrium constants always increase.
 - 5. rate constants always decrease and equilibrium constants either increase or decrease.

56% 6. rate constants always increase and equilibrium constants either increase or decrease.

Free energy, ΔG , is a state function, independent of path. Therefore the equilibrium constant by the presence of a catalyst.

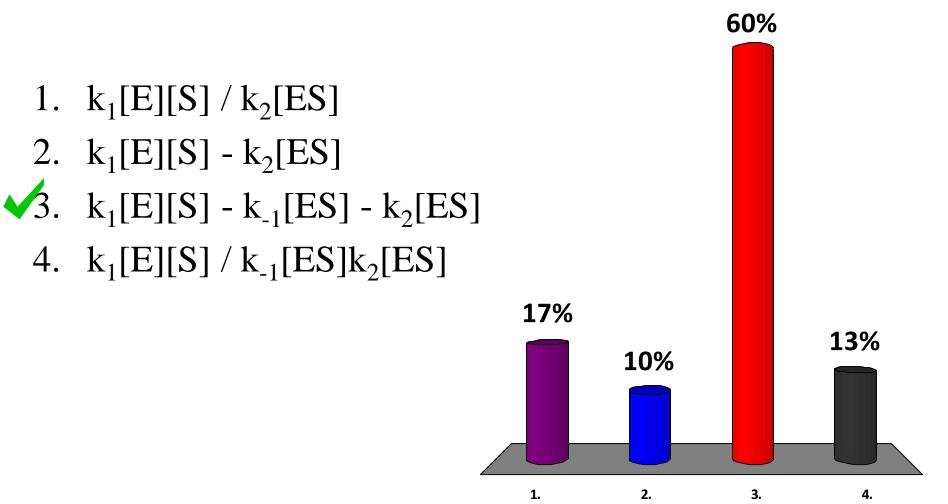
- 1. becomes more negative (more spontaneous)
- 2. becomes more negative (less spontaneous)
- 3. becomes more positive (more spontaneous)
- 4. becomes more positive (less spontaneous)
- 5. is not changed

Free energy, ΔG , is a state function, independent of path. Therefore the equilibrium constant by the presence of a catalyst.

10%	1.	becomes more negative (more spontaneous)
<mark>4%</mark>	2.	becomes more negative (less spontaneous)
8%	3.	becomes more positive (more spontaneous)
0%	4.	becomes more positive (less spontaneous)
78%	<u></u> 5.	is not changed

Which rate laws are correct for step 1? Step 1 $E + S \Leftrightarrow ES$ k_1

- 1. Rate_f = k_1 [E][S] and Rate_r = k_{-1} [ES]
- 2. Rate_f = k_1 [ES] and Rate_r = k_{-1} [E][S]
- 3. Rate_f = k_1 [ES]/[E][S] and Rate_r = k_{-1} [E][S]/[ES]
- 4. Rate_f = k_1 [ES]/[E] and Rate_r = k_{-1} [E]/[ES]


Which rate laws are correct for step 1? Step 1 $E + S \Leftrightarrow ES$ k_1

74%	\bigcirc 1. Rate _f = k ₁ [E][S] and Rate _r = k ₁ [ES]
8%	2. Rate _f = k_1 [ES] and Rate _r = k_{-1} [E][S]
16%	3. Rate _f = k_1 [ES]/[E][S] and Rate _r = k_{-1} [E][S]/[ES]
3%	4. Rate _f = k_1 [ES]/[E] and Rate _r = k_{-1} [E]/[ES]

Solve for intermediate [ES] d[ES]/dt =

- 1. $k_1[E][S] / k_2[ES]$
- 2. $k_1[E][S] k_2[ES]$
- 3. $k_1[E][S] k_{-1}[ES] k_2[ES]$
- 4. $k_1[E][S] / k_{-1}[ES]k_2[ES]$

Solve for intermediate [ES] d[ES]/dt =

The conversion of CO₂ in blood to HCO⁻ and H₃O⁺ is catalyzed by the enzyme carbonic anhydrase. The Michaelis-Menton constants for this enzyme and substrate are $K_m = 8 \times 10^{-5}$ M and $k_2 = 6 \times 10^5$ s⁻¹.

What is the maximum reaction rate if the enzyme concentration is 5 x 10⁻⁶ M?

- 1. $(5 \times 10^{-6} \text{ M}) \times (6 \times 10^{5} \text{ s}^{-1}) = 3 \text{ M/s}$
- 2. $(6 \times 10^5 \text{ s}^{-1}) / (5 \times 10^{-6} \text{ M}) = 1.2 \times 10^{11} \text{ M}^{-1} \text{ s}^{-1}$
- 3. 8 x 10⁻⁵ M/s
- 4. $6 \times 10^5 \text{ s}^{-1}$

The conversion of CO₂ in blood to HCO⁻ and H₃O⁺ is catalyzed by the enzyme carbonic anhydrase. The Michaelis-Menton constants for this enzyme and substrate are $K_m = 8 \times 10^{-5}$ M and $k_2 = 6 \times 10^5$ s⁻¹.

What is the maximum reaction rate if the enzyme concentration is 5 x 10⁻⁶ M?

<mark>75%</mark>	✓ 1. $(5 \times 10^{-6} \text{ M}) \times (6 \times 10^{5} \text{ s}^{-1}) = 3 \text{ M/s}$	
15%	2. $(6 \times 10^5 \text{ s}^{-1}) / (5 \times 10^{-6} \text{ M}) = 1.2 \times 10^{11} \text{ M}^{-1} \text{ s}^{-1}$	l
4%	3. 8 x 10 ⁻⁵ M/s	
6%	4. $6 \ge 10^5 \text{ s}^{-1}$	

The conversion of CO₂ in blood to HCO⁻ and H₃O⁺ is catalyzed by the enzyme carbonic anhydrase. The Michaelis-Menton constants for this enzyme and substrate are $K_m = 8 \times 10^{-5} \text{ M}$ and $k_2 = 6 \times 10^5 \text{ s}^{-1}$. The enzyme concentration is 5 x 10⁻⁵ M.

At which concentration of substrate will the rate be 1.5 M/s?

- 1. not enough information given.
- 2. 5 x 10⁻⁶ M
- 3. 2.5 x 10⁻⁶ M
- 4. 8 x 10⁻⁵ M
- 5. 4 x 10⁻⁵ M

The conversion of CO₂ in blood to HCO⁻ and H₃O⁺ is catalyzed by the enzyme carbonic anhydrase. The Michaelis-Menton constants for this enzyme and substrate are $K_m = 8 \times 10^{-5} \text{ M}$ and $k_2 = 6 \times 10^5 \text{ s}^{-1}$. The enzyme concentration is 5 x 10⁻⁵ M.

At which concentration of substrate will the rate be 1.5 M/s?

<mark>9%</mark>	1.	not enough information given.
13%	2.	5 x 10 ⁻⁶ M
31%	3.	2.5 x 10 ⁻⁶ M
40%	4 .	8 x 10 ⁻⁵ M
7%	5.	4 x 10 ⁻⁵ M

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.